//
// File: fft_sample.v
// Date: 10-Nov-05
// Author: I. Chuang <ichuang@mit.edu>
//
// Demonstration of the Xilinx FFT module on data from an ADC.
//
// A 256-point, 8-bit discrete fourier transform is performed continuously
// on an incoming buffer of data, and the results are processed and
// graphically displayed in a 256x256 window in a VGA display.
//
// This specific demo uses the Digilent ADC peripheral module,
// which has two ADCS7476 chips. See http://www.digilentinc.com
//
// Connect the board as follows:
//
// CS = User 3 D3 (user3[3])
// D0 = User 3 D2 (user3[2])
// D1 = User 3 D1 (user3[1])
// CLK = User 3 D0 (user3[0])
// VCC = 3.3V
//
// The FFT transform is done on the data in channel D0.
//
// The eight switches are used to set the FFT scaling factors, which are
// used to ensure the FFT does not overflow at any stage internal to the
// computation. One reasonable starting point is 8'b0110_0110, if the
// ADC input is driven full range (0 to 3.3V swing sinusoid input).
//
// Note that the FFT produces two's complement output, and that the outputs
// give the real and imaginary part of the FFT. A more useful output
// is the magnitude, which gives the power spectrum. Here, we simply
// compute the sum of squares of the real and imaginary output values
// (and skip the square root).
//
// Also note that no input filtering is done, and thus there are
// significant aliasing problems. The input data should be filtered to
// cut off frequencies higher than the inverse of the sampling window
// size (here, 256 points).
//
// This example uses vga_graph2_buf, which produces a 256 x 256 window
// graph of two channels.
//
// Button 0 selects between FFT display and ADC value display
// Button 3 selects the test color bar display
// The enter button is reset.
`include "vga_sync.v"
`include "debounce.v"
`include "display_16hex.v"
`include "adc_driver.v"
`include "vga_graph2_buf.v"
`include "fft_256pt_8bit.v"
`include "math_8bit_mult.v"
`include "twos2off.v"
module fft_sample(
beep, audio_reset_b, ac97_sdata_out, ac97_sdata_in, ac97_synch,
ac97_bit_clock,
vga_out_red, vga_out_green, vga_out_blue, vga_out_sync_b,
vga_out_blank_b, vga_out_pixel_clock, vga_out_hsync,
vga_out_vsync,
tv_out_ycrcb, tv_out_reset_b, tv_out_clock, tv_out_i2c_clock,
tv_out_i2c_data, tv_out_pal_ntsc, tv_out_hsync_b,
tv_out_vsync_b, tv_out_blank_b, tv_out_subcar_reset,
tv_in_ycrcb, tv_in_data_valid, tv_in_line_clock1,
tv_in_line_clock2, tv_in_aef, tv_in_hff, tv_in_aff,
tv_in_i2c_clock, tv_in_i2c_data, tv_in_fifo_read,
tv_in_fifo_clock, tv_in_iso, tv_in_reset_b, tv_in_clock,
ram0_data, ram0_address, ram0_adv_ld, ram0_clk, ram0_cen_b,
ram0_ce_b, ram0_oe_b, ram0_we_b, ram0_bwe_b,
ram1_data, ram1_address, ram1_adv_ld, ram1_clk, ram1_cen_b,
ram1_ce_b, ram1_oe_b, ram1_we_b, ram1_bwe_b,
clock_feedback_out, clock_feedback_in,
flash_data, flash_address, flash_ce_b, flash_oe_b, flash_we_b,
flash_reset_b, flash_sts, flash_byte_b,
rs232_txd, rs232_rxd, rs232_rts, rs232_cts,
mouse_clock, mouse_data, keyboard_clock, keyboard_data,
clock_27mhz, clock1, clock2,
disp_blank, disp_data_out, disp_clock, disp_rs, disp_ce_b,
disp_reset_b, disp_data_in,
button0, button1, button2, button3, button_enter, button_right,
button_left, button_down, button_up,
switch,
led,
user1, user2, user3, user4,
daughtercard,
systemace_data, systemace_address, systemace_ce_b,
systemace_we_b, systemace_oe_b, systemace_irq, systemace_mpbrdy,
analyzer1_data, analyzer1_clock,
analyzer2_data, analyzer2_clock,
analyzer3_data, analyzer3_clock,
analyzer4_data, analyzer4_clock
);
output beep, audio_reset_b, ac97_synch, ac97_sdata_out;
input ac97_bit_clock, ac97_sdata_in;
output [7:0] vga_out_red, vga_out_green, vga_out_blue;
output vga_out_sync_b, vga_out_blank_b, vga_out_pixel_clock,
vga_out_hsync, vga_out_vsync;
output [9:0] tv_out_ycrcb;
output tv_out_reset_b, tv_out_clock, tv_out_i2c_clock, tv_out_i2c_data,
tv_out_pal_ntsc, tv_out_hsync_b, tv_out_vsync_b, tv_out_blank_b,
tv_out_subcar_reset;
input [19:0] tv_in_ycrcb;
input tv_in_data_valid, tv_in_line_clock1, tv_in_line_clock2, tv_in_aef,
tv_in_hff, tv_in_aff;
output tv_in_i2c_clock, tv_in_fifo_read, tv_in_fifo_clock, tv_in_iso,
tv_in_reset_b, tv_in_clock;
inout tv_in_i2c_data;
inout [35:0] ram0_data;
output [18:0] ram0_address;
output ram0_adv_ld, ram0_clk, ram0_cen_b, ram0_ce_b, ram0_oe_b, ram0_we_b;
output [3:0] ram0_bwe_b;
inout [35:0] ram1_data;
output [18:0] ram1_address;
output ram1_adv_ld, ram1_clk, ram1_cen_b, ram1_ce_b, ram1_oe_b, ram1_we_b;
output [3:0] ram1_bwe_b;
input clock_feedback_in;
output clock_feedback_out;
inout [15:0] flash_data;
output [23:0] flash_address;
output flash_ce_b, flash_oe_b, flash_we_b, flash_reset_b, flash_byte_b;
input flash_sts;
output rs232_txd, rs232_rts;
input rs232_rxd, rs232_cts;
inout mouse_clock, mouse_data;
//input mouse_clock, mouse_data;
input keyboard_clock, keyboard_data;
input clock_27mhz, clock1, clock2;
output disp_blank, disp_clock, disp_rs, disp_ce_b, disp_reset_b;
input disp_data_in;
output disp_data_out;
input button0, button1, button2, button3, button_enter, button_right,
button_left, button_down, button_up;
input [7:0] switch;
output [7:0] led;
inout [31:0] user1, user2, user3, user4;
inout [43:0] daughtercard;
inout [15:0] systemace_data;
output [6:0] systemace_address;
output systemace_ce_b, systemace_we_b, systemace_oe_b;
input systemace_irq, systemace_mpbrdy;
output [15:0] analyzer1_data, analyzer2_data, analyzer3_data,
analyzer4_data;
output analyzer1_clock, analyzer2_clock, analyzer3_clock, analyzer4_clock;
////////////////////////////////////////////////////////////////////////////
//
// I/O Assignments
//
////////////////////////////////////////////////////////////////////////////
// Audio Input and Output
assign beep= 1'b0;
assign audio_reset_b = 1'b0;
assign ac97_synch = 1'b0;
assign ac97_sdata_out = 1'b0;
// ac97_sdata_in is an input
// VGA Output
// assign vga_out_red = 10'h0;
// assign vga_out_green = 10'h0;
// assign vga_out_blue = 10'h0;
assign vga_out_sync_b = 1'b1;
// assign vga_out_blank_b = 1'b1;
// assign vga_out_pixel_clock = 1'b0;
// assign vga_out_hsync = 1'b0;
// assign vga_out_vsync = 1'b0;
// Video Output
assign tv_out_ycrcb = 10'h0;
assign tv_out_reset_b = 1'b0;
assign tv_out_clock = 1'b0;
assign tv_out_i2c_clock = 1'b0;
assign tv_out_i2c_data = 1'b0;
assign tv_out_pal_ntsc = 1'b0;
assign tv_out_hsync_b = 1'b1;
assign tv_out_vsync_b = 1'b1;
assign tv_out_blank_b = 1'b1;
assign tv_out_subcar_reset = 1'b0;
// Video Input
assign tv_in_i2c_clock = 1'b0;
assign tv_in_fifo_read = 1'b0;
assign tv_in_fifo_clock = 1'b0;
assign tv_in_iso = 1'b0;
assign tv_in_reset_b = 1'b0;
assign tv_in_clock = 1'b0;
assign tv_in_i2c_data = 1'bZ;
// tv_in_ycrcb, tv_in_data_valid, tv_in_line_clock1, tv_in_line_clock2,
// tv_in_aef, tv_in_hff, and tv_in_aff are inputs
// SRAMs
assign ram0_data = 36'hZ;
assign ram0_address = 19'h0;
assign ram0_adv_ld = 1'b0;
assign ram0_clk = 1'b0;
assign ram0_cen_b = 1'b1;
assign ram0_ce_b = 1'b1;
assign ram0_oe_b = 1'b1;
assign ram0_we_b = 1'b1;
assign ram0_bwe_b = 4'hF;
assign ram1_data = 36'hZ;
assign ram1_address = 19'h0;
assign ram1_adv_ld = 1'b0;
assign ram1_clk = 1'b0;
assign ram1_cen_b = 1'b1;
assign ram1_ce_b = 1'b1;
assign ram1_oe_b = 1'b1;
assign ram1_we_b = 1'b1;
assign ram1_bwe_b = 4'hF;
assign clock_feedback_out = 1'b0;
// clock_feedback_in is an input
// Flash ROM
assign flash_data = 16'hZ;
assign flash_address = 24'h0;
assign flash_ce_b = 1'b1;
assign flash_oe_b = 1'b1;
assign flash_we_b = 1'b1;
assign flash_reset_b = 1'b0;
assign flash_byte_b = 1'b1;
// flash_sts is an input
// RS-232 Interface
assign rs232_txd = 1'b1;
assign rs232_rts = 1'b1;
// rs232_rxd and rs232_cts are inputs
// PS/2 Ports
// mouse_clock, mouse_data, keyboard_clock, and keyboard_data are inputs
// LED Displays
/*
assign disp_blank = 1'b1;
assign disp_clock = 1'b0;
assign disp_rs = 1'b0;
assign disp_ce_b = 1'b1;
assign disp_reset_b = 1'b0;
assign disp_data_out = 1'b0;
*/
// disp_data_in is an input
// Buttons, Switches, and Individual LEDs
//lab3 assign led = 8'hFF;
// button0, button1, button2, button3, button_enter, button_right,
// button_left, button_down, button_up, and switches are inputs
// User I/Os
assign user1 = 32'hZ;
assign user2 = 32'hZ;
assign user3 = 32'hZ;
assign user4 = 32'hZ;
// Daughtercard Connectors
assign daughtercard = 44'hZ;
// SystemACE Microprocessor Port
assign systemace_data = 16'hZ;
assign systemace_address = 7'h0;
assign systemace_ce_b = 1'b1;
assign systemace_we_b = 1'b1;
assign systemace_oe_b = 1'b1;
// systemace_irq and systemace_mpbrdy are inputs
// Logic Analyzer
assign analyzer1_data = 16'h0;
assign analyzer1_clock = 1'b1;
assign analyzer2_data = 16'h0;
assign analyzer2_clock = 1'b1;
assign analyzer3_data = 16'h0;
assign analyzer3_clock = 1'b1;
assign analyzer4_data = 16'h0;
assign analyzer4_clock = 1'b1;
// use FPGA's digital clock manager to produce a 50 Mhz clock from 27 Mhz
// actual frequency: 49.85 MHz
wire clock_50mhz_unbuf,clock_50MHz;
DCM vclk1(.CLKIN(clock_27mhz),.CLKFX(clock_50mhz_unbuf));
// synthesis attribute CLKFX_DIVIDE of vclk1 is 13
// synthesis attribute CLKFX_MULTIPLY of vclk1 is 24
// synthesis attribute CLK_FEEDBACK of vclk1 is NONE
// synthesis attribute CLKIN_PERIOD of vclk1 is 37
BUFG vclk2(.O(clock_50MHz),.I(clock_50mhz_unbuf));
////////////////////////////////////////
// The fft example
wire clk = clock_50MHz;
wire power_on_reset;
SRL16 reset_sr (.D(1'b0), .CLK(clk), .Q(power_on_reset),
.A0(1'b1), .A1(1'b1), .A2(1'b1), .A3(1'b1));
defparam reset_sr.INIT = 16'hFFFF;
wire user_reset;
debounce dbreset(1'b0,clk,~button_enter,user_reset);
wire reset = power_on_reset | user_reset;
// generate synchronous clock for DSP system: 806.45 kHz
reg [5:0] dcount;
wire clk_dsp = (dcount==61) ? 1 : 0;
always @(posedge clk) dcount <= clk_dsp ? 0 : dcount+1;
// adc driver
wire [11:0] adc_v0, adc_v1;
wire adc_rdy;
wire adc_cs_b, adc_clk, adc_data0, adc_data1;
assign user3[0] = adc_clk;
assign user3[1] = 1'hZ;
assign user3[2] = 1'hZ;
assign user3[3] = adc_cs_b;
assign adc_data0 = user3[2];
assign adc_data1 = user3[1];
adc_driver ad1(clk,adc_cs_b,adc_clk,adc_data0,adc_data1,adc_v0,
adc_v1,adc_rdy);
// fft
//
// Be careful: the FFT module expects data input and output all in two's
// complement format.
// note that a good value to set the scale to is 8'b1010_1011
reg [7:0] xn_re;
wire [7:0] xn_im;
wire fft_start;
wire fwd_inv = 1;
wire fwd_inv_we;
wire [7:0] scale_sch = switch; // wired to switches
wire scale_sch_we;
wire [7:0] xk_re,xk_im;
wire [7:0] xn_index, xk_index;
wire fft_ce = clk_dsp;
wire fft_rfd;
wire fft_busy;
wire fft_dv;
wire fft_edone;
wire fft_done;
fft_256pt_8bit fft1(xn_re, // real data, input
xn_im, // imaginary data, input
fft_start, // start data loading & conversion, in
fwd_inv, // forward or inverse, input
fwd_inv_we, // write enable for fwd_inv, input
scale_sch, // scaling schedule, input
scale_sch_we, // write enable for scale_sch, input
fft_ce, // clock enable
clk, // system synchronous clock
xk_re, // output real data
xk_im, // output imaginary data
xn_index, // index of input data (output)
xk_index, // index of output data (output)
fft_rfd, // ready for data, out
fft_busy, // high while core is computing fft
fft_dv, // data valid, output
fft_edone, // early done strobe, output
fft_done); // fft complete strobe, output
// fft module initialization: simple sequencer
// initclk = 0: nop, 1: load scale and fwd/inv, 3: start fft
reg [1:0] initclk;
always @(posedge clk)
initclk <= reset ? 0 : (((initclk<3) & clk_dsp) ? initclk + 1 : initclk);
assign fwd_inv_we = (initclk==2'd1);
assign fft_start = (initclk==2'd3);
// reload scale factors when changed as well as at init time
reg [7:0] old_scale_sch;
always @(posedge clk) old_scale_sch <= scale_sch;
assign scale_sch_we = initclk[0] | ~(scale_sch==old_scale_sch);
// feed data to the FFT : be sure to convert to two's complement.
// we assume data from ADC is centered around the mean.
assign xn_im = 8'b0; // no imaginary valued data (for now)
wire [3:0] adc_scale = 4'd4; // ADC is 12 bits; discard lower four
wire [11:0] gdat = adc_v0; // which channel of ADC to transform
wire [11:0] pdat = (gdat >> adc_scale);
wire [7:0] vdat; // two's complement voltage data to FFT
offset_to_twos ott1(pdat[7:0],vdat);
always @(posedge clk) // register the data and feed to FFT
xn_re <= clk_dsp ? vdat : xn_re;
// compute sum of squares of FFT output real and imaginary parts
// to get a power spectrum
wire [15:0] re_sq, im_sq;
math_8bit_mult m8m_signed1(clk,xk_re,xk_re,re_sq);
math_8bit_mult m8m_signed2(clk,xk_im,xk_im,im_sq);
wire [16:0] fft_out_sum_sq = re_sq + im_sq;
// convert FFT outputs to shifted unsigned integer
// wire [7:0] fft_out_re, fft_out_im;
// twos_to_offset tto1(xk_re,fft_out_re);
// twos_to_offset tto2(xk_im,fft_out_im);
// 640x480 VGA display
wire [2:0] pixel;
wire blank;
wire pix_clk;
wire [9:0] hcount, vcount;
assign vga_out_red = {8{pixel[0]}};
assign vga_out_green = {8{pixel[1]}};
assign vga_out_blue = {8{pixel[2]}};
assign vga_out_blank_b = ~blank;
assign vga_out_pixel_clock = pix_clk; // vga pixel clock
vga_sync vga1(clk,vga_out_hsync,vga_out_vsync,hcount,vcount,pix_clk,blank);
// video graph
wire [2:0] gpix;
wire [7:0] gdat1 = ~button0 ? adc_v0[11:4] : fft_out_sum_sq[15:8];
wire [7:0] gdat2 = ~button0 ? adc_v1[11:4] : 8'b0;
vga_graph2_buf vg1(reset,clk,pix_clk,hcount,vcount,gpix,
gdat1,gdat2,clk_dsp,fft_done,10'd190,10'd200);
defparam vg1.NX = 256;
// cumulative video pixel
wire fpixel = (hcount==0 | hcount==639 | vcount==0 | vcount==479);
wire [2:0] cumpix = {3{fpixel}} | gpix ;
assign pixel = (~button3 ? hcount[7:5] : cumpix) & ~{3{blank}};
// debug
assign led = ~switch;
wire [63:0] dispdata = {adc_v0,4'b0,adc_v1,4'b0,4'b0,4'b0,xn_re,
8'b0,scale_sch};
display_16hex d1(reset, clk, dispdata,
disp_blank, disp_clock, disp_rs, disp_ce_b,
disp_reset_b, disp_data_out);
endmodule
This page: |
Created: | Thu Dec 8 21:40:41 2005 |
|
From: |
fft_sample.v |