In the Laboratory
8.13 Syllabus and Policies
8.14 Syllabus and Policies
Lab Notebook Guidelines

Reports and Presentations
Reports and Presentations
Oral Report Evaluation Form
Physical Review Home
APS Guidelines for Speakers

Computing
Computing Environment
MATLAB
Numerical Recipes in C
Geant 4
Integrals.com

Resources
CRC Handbook
NIST Physics Data
Table of the Isotopes
National Nuclear Data Center
WebElements Periodic Table
List of Nobel Prizes
HyperPhysics Web Site
Overview of Particle Physics
Particle Data Group

Society of Physics Students
American Physical Society
American Institute of Physics
Other Advanced Physics Labs

MIT Links
EHS Training
Certificates
Libraries
Webmail

6. The Zeeman Effect

The magnetic splitting of spectral lines. A scanning Fabry-Perot interferometer is used to measure the Zeeman effect in mercury and neon. The results are compared with the expectations derived from the vector model for the addition of atomic and nuclear angular momenta. A value of the ratio e/m of the electron is derived from the data.

Student Wiki: Zeeman Effect

Download Lab Guide in PDF format

References (certificates required)

  1. Pieter Zeeman's Nobel Prize Lecture, (1902).
  2. P. Zeeman, "On the Influence of Magnetism on the Nature of the Light emitted by a Substance", Philosophical Magazine, Series 5, 43:262, 226-239, (1897)
  3. H. E. White, Introduction to Modern Physics, (New York, McGraw, 1934), "LS/JJ Coupling Tables"
  4. H. Schuler and J. Keyston, "Hyperfeinstrukturen und Kernmomente des Quecksilbers," (1931).
  5. Schuler., H., and Jones, E.G., Hyperfeinstrukturen und Kernmomente des Quecksilbers. II, pp. 630-646 from Zeitschrift Fur Physik [1932]
  6. H. E. White, Introduction to Atomic Spectra, (New York, London, McGraw-Hill book company, inc., 1934), "Zeeman Effect and the Paschen-Back Effect", Chap. X, pp. 149-223, and "The Zeeman Effect and Magnetic Quantum Numbers", Chap. XV, pp. 286-290
  7. G. Herzberg, Atomic Spectra and Atomic Structure, (New York, Dover, 1944), "Interpretation of Quantum Numbers", pp. 82-113
  8. K. Burns and K. Adams, and J. Longwell, Interference Measurements in the Spectra of Neon and Natural Mercury, Journa of the Optical Society of America, Vol. 40, 1950
  9. K. Burns and K. Adams, Energy Levels and Wavelengths of the Isotopes of Mercury-199 and -200, Journa of the Optical Society of America, Vol. 42, 1952
  10. B. B. Rossi, Optics, (Reading, MA, Addison-Wesley Pub. Co., 1957), "Fabry-Perot Interferometer Optics", pp. 140-145
  11. E. Condon and G. Shortley, The Theory of Atomic Spectra, (Cambridge, England, University Press, 1959), "The Zeeman Effect", Chap. 5, pp. 149-157
  12. E. Condon and G. Shortley, The Theory of Atomic Spectra, (Cambridge, england, University Press, 1959), "The Zeeman Effect", Chap. 16, pp. 378-396
  13. A. Melissinos, Experiments in Modern Physics, (New York, Academic Press, 1966), "High Resolution Spectroscopy", Chap. 7, pp.280-339
  14. F. K. Richtmyer, E. H. Kennard, and J. N. Cooper, Introduction to Modern Physics 6th ed., (New York, McGraw-Hill, 1969), "Atomic Spectra", Chap. 17, pp. 431-487
  15. H. Semat and J. Albright, Introduction to Atomic and Nuclear Physics, (New York, Holt, Rinehart and Winston, 1972), "Optical Spectra and Electronic Structure", Chap. 9
  16. B. Cagnac and J. Pebay-Peyroula, Modern Atomic Physics: Fundamental Principles, (New York, Wiley, 1975), "Classical Magnetism Arising from Orbital Motion", pp. 193-207
  17. R. Eisberg and R. Resnick, Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles, 2nd ed., (New York, Wiley, 1985), "Multielectron Atoms - Optical Excitations", pp. 347-371
  18. D. W. Preston, The Art of Experimental Physics, (New York, Wiley and Sons, 1991), Chap. 7, pp. 241-263
  19. Photocopy from Atomic and Molecular Physics - Mercury Spectrum

Selected Resources

  1. Walker Scientific MG-4D Hall Effect Gaussmeter Instruction Manual
  2. Walker Scientific Hall Effect Probe HP145R
  3. Burleigh RG-44 Ramp Generator
  4. Burleigh Fabry-Perot
  5. Burleigh Tech Memo on Fabry-Perot Interferometry
  6. MIT Telescope (focal length = 43.5cm)
  7. 3" collimating field lens 33.0cm focal length
  8. Oriel 25010 Linear Polarizer
  9. Melles Griot 05-LHR-911 Cylindrical He-Ne Laser (632.8nm)
  10. Ortec 5564 High Voltage Supply
  11. Industrial Coils Magnet Power Supply 37695 (0-80A)
  12. MIT PMT
  13. Zero-Gauss Reference Chamber
  14. Oriel UV Safety Goggles
  15. Oriel Pencil Style Spectral Calibration Lamps
  16. Oriel Typical Spectra of Oriel Spectral Calibration Lamps
  17. Oriel Calibration Lamp DC Power Supply Model 6060
  18. Oriel Spectral Line Lamp Mount 65160
  19. Oriel Spectral Line Regulated Power Supply 65150
site maintained by the Junior Lab Staff