In the Laboratory
8.13 Syllabus and Policies
8.14 Syllabus and Policies
Lab Safety Guidelines
Lab Ethics Guidelines
Lab Notebook Guidelines
Other EHS Documents

Reports and Presentations
Reports and Presentations
Oral Report Evaluation Form
Physical Review Home
APS Guidelines for Speakers

Computing
Computing Environment
MATLAB
Numerical Recipes in C
Geant 4
Integrals.com

Resources
CRC Handbook
NIST Physics Data
Table of the Isotopes
National Nuclear Data Center
WebElements Periodic Table
List of Nobel Prizes
HyperPhysics Web Site
Overview of Particle Physics
Particle Data Group

Advanced Laboratory Physics Association
Society of Physics Students
American Physical Society
American Institute of Physics

MIT Links
EHS Training
Certificates
Libraries
Webmail

13. Mössbauer Spectroscopy

The Mössbauer effect and some of its applications in ultra-high resolution , , gamma-ray spectroscopy are explored. The Zeeman splittings, quadrupole splittings, and chemical shifts of the 14 keV Mössbauer gamma-ray line emitted in the recoilless decay of the first excited state of the 57Fe nucleus are measured in iron and in various iron compounds and alloys.

From the data and knowledge of the magnetic moment of the 57Fe ground state one determines the magnetic moment of the first excited state, and the strengths of the magnetic field at the sites of the iron nuclei in metallic iron, Fe2O3, and Fe3O4.

The natural line widths of the 14 keV transitions are determined from measurements of the absorption line profiles in sodium ferrocyanide absorbers of various thicknesses. Relativistic time dilation is demonstrated by a measurement of the temperature coefficient of the energy of the 14 keV absorption lines in enriched iron.

Student Wiki: Mossbauer Spectroscopy

Download Lab Guide in PDF format

References (certificates required)

  1. S. De Benedetti, "The Moessbauer Effect", Scientific American, April, pp.72-80, (1960)
  2. S. De Benedetti, G. Lang, and R. Ingalls, "Electric Quadrupole Splitting and the Nuclear Volume Effect in the Ion of FE57", Physical Review Letters, V6N4, January, pp. 60-62, (1961)
  3. S. L. Ruby, L. M. Epstein, and K. H. Sun, "Moessbauer Effect in Ferrocyanide", Review of Scientific Instruments, 31, pp.580, (1960)
  4. Nobel Lectures from Robert Hofstadter and Rudolph Ludwig Moessbauer [1961]
  5. A. J. F. Boyle and H. E. Hall, "The Moessbauer Effect", Reports on the Progress of Physics, pp. 441-524, (1962)
  6. H. Frauenfelder, The Moessbauer Effect: A Review with a Collection of Reprints, (New York, W.A. Benjamin, Inc., 1962)
    1. O. C. Kistner and A. W. Sunyar, "Evidence for Quadrupole Interaction of Fe57 and Influence of Chemical Binding on Nuclear Gamma-Ray Energy", Phys. Rev. Lett., 4, pp. 412-415, (1960). note:Better copy than the one in Frauenfelder
  7. R. S. Preston, S. S. Hanna, and J. Heberle "Mossbauer Effect in Metallic Iron", Phys. Rev., 128, Number 5, pp. 2207-2218, (1962)
  8. J. King ed., Moessbuaer Effect: Selected Reprints, American Institute of Physics (1963), Addendum to Reprints, (1963)

Selected Resources

  1. Mössbauer Spectroscopy International Organizations
  2. Mössbauer Spectroscopy Schematic
  3. MIT Department of Chemistry
  4. Mössbauer Links
  5. ASA - S700A Mossbauer Drive
  6. ASA -S700A Initial Checkout Manual
  7. OxfordWin Software V3.80 (18,530kB)
  8. ASA PC-200 Proportional Counter Detector
  9. Ortec 109PC Proportional Counter Preamplifer
  10. Canberra 3002D HV Power Supply
  11. Canberra 815 Amplifier - No Manual Available
  12. Melles Griot 05-LHR-111 Cylindrical He-Ne Laser
  13. MIT Low Frequency Amplifier
  14. Omega CN5001J1-F2 Temperature Controller - J Type Thermocouple Sensor 0-650C Setpoint
  15. Sample Heater
site maintained by the Junior Lab Staff