home buttonresearch linklab people linkgroup meeting linklinks button linkcookbook linksafety linkcomments button


All underlined titles are linked to an abstract of the article. Most are to PubMed.

For a keyword search of this publications list, use the find command on your browser.

To view a list of publications by category, click on the topic of interest.

Or you can search by year.



Protein Aggregation & Misfolding

 

Serebryany E and King JA (2015) Wild-type human γD-crystallin promotes aggregation of its oxidation-mimicking, misfolding-prone W42Q mutant. J Biol Chem, 290(18):11491-11503. doi: 10.1074/jbc.M114.621581.

Sergeeva OA, Tran MT, Haase-Pettingell C and King JA. (2014) Biochemical characterization of mutants in chaperonin proteins CCT4 and CCT5 associated with hereditary sensory neuropathy. J Biol Chem, 289(40): 27470-27480. doi: 10.1074/jbc.M114.576033

Serebryany E and King JA. (2014) The βγ-crystallins: Native state stability and pathways to aggregation. Prog Biophys and Mol Biol ("Crystallins of the Eye"), 115(1): 32-41. doi: 10.1016/j.pbiomolbio.2014.05.002

Sergeeva OA, Yang J, King JA, and Knee KM. (2014) Group II archaeal chaperonin recognition of partially folded human γD crystallin mutants. Protein Sci, 23(6): 693-702. March 10 doi: 10.1002/pro.2452.

Schafheimer N, Wang Z, Schey K and King J. (2014) Tryosine/Cysteine cluster sensitizing human γD-Crystallin to ultraviolet radiation-induced photo-aggregation in vitro. Biochemistry, 53(6): 979-990.

Xia Z, Yang Z, Huynh T, King JA and Zhou R. (2013) UV-radiation induced disruption of dry-cavities in Human γ-D-cyrstallin results in decreased stability and faster unfolding. Nature Scientific Reports, 3: article 1560. doi:10.1038/srep01560

Sergeeva OA, Chen B, Haase-Pettingell C, Ludtke SJ, Chiu W and King JA (2013) Human CCT4 and CCT5 chaperonin subunits expressed in E. coli form biologically active homo-oligomers. J.Biol.Chem., 288(24): 17734-17744.

Knee K, Sergeeva OA and King J. (2013) Human TRiC complex purified from HeLa cells contains all eight CCT subunits and is active in vitro. Cell Stress Chaperones, 18(2): 137-144. Epub: September 26,2012 doi: 10.1007/s12192-012-0357-z.

Takata T, Haase-Pettingell C and King J. (2012) The C-terminal cysteine annulus participates in auto-chaperone function for Salmonella phage P22 tailspike folding and assembly. Bacteriophage, 2(1): 36-49.

Moreau KL and King JA. (2012) Cataract-causing defect of a mutant γ-Crystallin proceeds through an aggregation pathway which bypasses recognition by γ-Crystallin chaperone. PLOS One, 17(5): e37256.

Moreau KL and King JA. (2012) Protein misfolding and aggregation in cataract disease and prospects for prevention. Trends in Mol Med, 18(5): 273-282.

Pereira JH, Ralston CY, Douglas NR, Kumar R, Lopez T, McAndrew RP, Knee KM, King JA, Frydman J and Adams PD. (2012) Mechanism of nucleotide sensing in group II Chaperonins. EMBO J, 31(3): 731-740.

Das P, King JA and Zhou R. (2011) Aggregation of γ-crystallins associated with human cataracts via domain swapping at the C-terminal β-strands. PNAS, 108(26): 10514-10519.

Goulet DR, Knee KM and King JA. (2011) Inhibition of unfolding and aggregation of lens protein human γD-crystallin by sodium citrate. Exp Eye Res, 93(4): 371-381.

Knee KM, Goulet DR, Zhang J, Chen B, Chiu W and King JA. (2011) The group II chaperonin Mm-Cpn binds and refolds human γD crystallin. Protein Sci, 20(1): 30-41.

Pereira JH, Ralston CY, Douglas NR, Meyer D, Knee KM, Goulet DR, King JA, Frydman J and Adams PD. (2010) Crystal structures of a group II chaperonin reveal the open and closed states associated with the protein folding cycle. J Biol Chem, 285(36): 27958-17966.

Acosta-Sampson L and King J. (2010) Partially folded aggregation intermediates of human γD, γC, and γS-cyrstallin are recognized and bound by human αβ-crystallin chaperone. J Mol Bio, 401(1): 134-152.

Wang Y, Petty S, Trojanowski A, Knee K, Goulet D, Mukerji I and King J. (2010) Formation of amyloid fibrils in vitro from partially unfolded intermediates of human γC-crystallin. IOVS, 51(2): 672-678 .

Wang Y and King J. (2010) Cataract as a protein aggregation disease. In, Protein Misfolding Diseases: Current and Emerging Principles and Therapies (Marina Ramirez-Alvarado, Jeffrey W. Kelly, and Christopher M. Dobson, eds.) John Wiley and Sons, Hoboken, NJ. pp. 487-515.

Wang H, Duennwald ML, Roberts BE, Rozeboom LM, Zhang YL, Steele AD, Krishnan R, Su LJ, Griffin D, Mukhopadhyay S, Hennessy EJ, Weigele P, Blanchard BJ, King J, Deniz AA, Buchwald SL, Ingram VM, Lindquist SM and Shorter J. (2008) Direct and selective elimination of specific prions and amyloids by 4,5-deanilinophthalimide and analogs. PNAS, 105(20): 7159-7164.

Papanikolopoulou K, Mills IA, Flaugh SL, Wang Y, Gross AAR, Kirschner DA, Decatur SM and King JA. (2008) Formation of amyloid fribrils in vitro by human γD-crystallin and its isolated domains. Mol Vis, 14: 81-89. http://www.molvis.org/molvis/v14/a10

Raso SW, Abel J, Barnes JM, Maloney KM, Pipes G, Treuheit MJ, King J and Brems DN. (2005) Aggregation of graulocyte-colony stimulating factor in vitro involves a conformationally altered monomeric state. Protein Sci, 14(9): 2246-2257.

Pande A, Pande J, Asherie N, Lomakin A, Ogun O, King J and Benedek GB. (2001) Crystal cataracts: Human genetic cataract caused by protein crystallization. PNAS, 98(11): 6116-6120.

Asherie N, Pande J, Pande A, Zarutskie JA, Lomakin J, Lomakin A, Ogun O, Stern LJ, King J and Benedek GB. (2001) Enhanced crystallization of the Cys18 to Ser mutant of bovine B crystallin. J. Mol.Biol., 314(4): 663-669.

Pande A, Pande J, Asherie N, Lomakin A, Ogun O, King J, Lubsen NH, Walton D and Benedek GB. (2000) Molecular basis of a progresssive juvenile-onset hereditary cataract. PNAS, 97(5): 1993-1998.

Raso SW and King J. (2000) "Protein folding and human disease." In, Frontiers in Molecular Biology: Mechanisms of Protein Folding, 2nd Edition (ed. R.H. Pain), Oxford University Press, 406-428. No abstract available.

Istrail S, Schwartz R and King J. (1999) Lattice simulations of aggregation funnels for protein folding. J Computat Biol, 6(2): 143-162.

Betts S and King J. (1999) There's a right way and a wrong way: in vivo and in vitro folding, misfolding and subunit assembly of the P22 tailspike. Structure, 7(6): R131-R139.

Betts S, Speed M and King J. (1999) Detection of early aggregation intermediates by native gel electrophoresis and native western blotting. In, Amyloid, Prions, and Other Protein Aggregates (ed. R. Wetzel), Vol. 309 of "Methods in Enzymology," Academic Press, pp. 333-350. No abstract available.

Jensen PK, King J and Lee CS. (1998) Investigating temperature effects on refolding and aggregation of a large multimeric protein using capillary zone electrophoresis. Analytical Chemistry J, 70(4), 730-736. http://pubs.acs.org/doi/full/10.1021/ac970884d

Betts S and King J. (1998) Cold rescue of the thermolabile tailspike intermediate at the junction between producitve folding and off-pathway aggregation. Protein Sci., 7(7): 1516-1523.

Konz JO, King J and Cooney CL. (1998) The effects of oxygen on recombinant protein expression. Biotech Prog, 14(3): 393-409.

Speed M, Morshead T, Wang D and King J. (1997) Conformation of P22 tailspike folding and aggregation intermediates probed by monoclonal antibodies. Protein Sci, 6(1): 99-108.

Speed M, King J and Wang DIC. (1997) Polymerization mechanism of polypeptide chain aggregation. Biotechnol Bioeng, 54(4): 333-343.

Betts S, Haase-Pettingell C, and King J. (1997) Mutational effects on inclusion body formation. In, Protein Misassembly (ed. R. Wetzel), Volume 50 of "Advances in Protein Chemistry," Academic Press, pp 243-264. No abstract available.

Speed M, Wang D and King J. (1996) Specific aggregation of partially folded polypeptide chains: The molecular basis of inclusion body composition. Nat Biotechnol, 14(10): 1283-1287.

King J, Haase-Pettingell C, Robinson A, Speed MA and Mitraki A. (1996) Thermolabile folding intermediates: Inclusion body precursors and chaperonin substrates. FASEB J, 10(1): 57-66.

Speed MA, Wang DIC and King J. (1995) Multimeric intermediates in the pathway to the aggregated inclusion body state for P22 tailspike polypeptide chains. Protein Sci, 4(5): 900-908.

King J, Teschke CM, Haase-Pettingell C and Mitraki A. (1993) Protein misfolding and inclusion body formation in prokaryotes. In: Research Opportunities in Biomolecular Engineering: The Interface Between chemical Engineering and Biology. Proceedings of the National Institute of General Medical Sciences. ( G. Georgiou and I. Glowinski, eds.), Washington, D.C., pp.25-32. No abstract available.

Fane B, Villafane R, Mitraki A and King J. (1991) Identifaction of global suppressors for temperature-sensitive folding mutants of the P22 tailspike protein. J Biol Chem, 266(18):11640-11648.

Mitraki A, Fane B, Haase-Pettingell C, Sturtevant J and King J. (1991) Global suppression of protein folding defects and inclusion body formation. Science, 253(5015), 54-58.

Mitraki A, Haase-Pettingell C and King J. (1991) Mechanisms of inclusion body formation. In Protein Refolding (G. Georgiou & E. de Bernardez-Clark, eds.) ACS Sympsosium Seris 470, American Chemical Society, Washington, D.C., pp. 35-49.

Mitraki A, Fane B, Haase-Pettingell C and King J. (1991) Mutations affecting protein folding and misfolding in vivo. In Application in Enzyme Biotechnology (eds. T. Baldwin and J. Kelly) Plenum Press, pp. 129-136. No abstract available.

King J, Fane B, Haase-Pettingell C, Mitraki A and Villafane R. (1990) Genetic analysis of polypeptide chain folding and misfolding in vivo. In Protein Design and the Development of New Therapeutics and Vaccines. (Ed. Jerry Hook & George Poste) Smith Kline and French Symposium, Plenum Press, 59-78. No abstract available.

Mitraki A and King J. (1989) Protein folding intermediates and inclusion body formation. Bio/technology, 7: 690-697.

King J and Haase-Pettingell C. (1988) Aggregate formation from a thermolabile intermediate in the maturation of the thermostable P22 tailspike Protein. British Biochem Soc Trans, 16(2): 105-108.

Haase-Pettingell C and King J. (1988) Formation of aggregates from a thermolabile in vivo folding intermediate in P22 tailspike maturation: Model for inclusion body formation. J Biol Chem, 263(10): 4977-4983.


Lens Crystallins

Serebryany E and King JA (2015) Wild-type human γD-crystallin promotes aggregation of its oxidation-mimicking, misfolding-prone W42Q mutant. J Biol Chem, 290(18):11491-11503. doi: 10.1074/jbc.M114.621581.

Serebryany E and King JA. (2014) The βγ-crystallins: Native state stability and pathways to aggregation. Prog Biophys and Mol Biol ("Crystallins of the Eye"), 115(1), 32-41. May 14 DOI: 10.1016/j.pbiomolbio.2014.05.002

Sergeeva OA, Yang J, King JA, and Knee KM. (2014) Group II archaeal chaperonin recognition of partially folded human γD crystallin mutants. Protein Sci, 23(6), 693-702. March 10 doi: 10.1002/pro.2452.

Schafheimer N, Wang Z, Schey K and King J. (2014) Tryosine/Cysteine cluster sensitizing human γD-Crystallin to ultraviolet radiation-induced photo-aggregation in vitro. Biochemistry, 53(6): 979-990.

Yang Z, Xia Z, Huynh T, King JA and Zhou R. (2013) Dissecting the contributions of b-hairpin tyrosine pairs to the folding and stability of long-lived human γD-crystallins. Nanoscale, doi:10.1039/c3nr03782g. (Royal Society of Chemistry)

Schafheimer N and King J (2013) Tryptophan Cluster Protects Human γD-Crystallin from Ultraviolet Radiation-Induced Photo-Aggregation In vitro. Photochem Photobiol., 89(5):1106-1115. 2013 May 20. [Epub ahead of print] doi: 10.1111/php.12096.

Xia Z, Yang Z, Huynh T, King JA and Zhou R. (2013) UV-radiation Induced Disruption of Dry-Cavities in Human γD-crystallin Results in Decreased Stability and Faster Unfolding. Nature Scientific Reports, 3, article 1560. doi:10.1038/srep01560

Moreau KL and King JA. (2012) Cataract-causing defect of a mutant γ-Crystallin proceeds through an aggregation pathway wich bypasses recognition by γ-Crystallin chaperone. PLOS One, 17(5) e37256. Epub 2012 May 24.

Moreau KL and King JA. (2012) Protein misfolding and aggregation in cataract disease and prospects for prevention. Trends in Mol. Med., May 18(5), 273-282. Epub 2012 Apr 19.

Das P, King JA and Zhou R. (2011) Aggregation of γ-crystallins associated with human cataracts via domain swapping at the C-terminal β-strands. PNAS, 108, 10514-10519.

Goulet DR, Knee KM and King JA. (2011) Inhibition of unfolding and aggregation of lens protein human γD-crystallin by sodium citrate. Exp. Eye Res., 93(4), 371-381.

Kong F and King J. (2011) Contributions of aromatic pairs to the folding and stability of long-lived human γD-crystallin. Protein Science, 20, 513-528.

Knee KM, Goulet DR, Zhang J, Chen B, Chiu W and King JA. (2011) The Group II chaperonin Mm-Cpn binds and refolds human γD Crystallin. Protein Science, 20, 30-41.

Dudek EJ, Lampi KJ, Lampi JA, Shang F, King J, Wang Y and Taylor A. (2010) Ubiquitin proteasome pathway-mediated degradation of proteins: effects due to site-specific substrate deamidation. IOVS, 51, 4164-4143.

Acosta-Sampson L and King J. (2010) Partially folded aggregation intermediates of human γD, γC, and γS-Cyrstallin are recognized and bound by human αβ-Crystallin chaperone. J.Mol.Bio., 401, 134-152.

Wang Y, Petty S, Trojanowski A, Knee K, Goulet D, Mukerji I and King J. (2010) Formation of amyloid fibrils in vitro from partially unfolded intermediates of human γC-Crystallin. IOVS, 51, 672-678 .

Das P, King JA and Zhou R. (2010) β-strand interactions at the domain interface critical for the stability of human lens γD-crystallin. J. Biol. Chem., 284, 33285-33295.

Wang Y and King J. (2010) Cataract as a protein aggregation disease. In, Protein Misfolding Diseases: Current and Emerging Principles and Therapies (Marina Ramirez-Alvarado, Jeffrey W. Kelly, and Christopher M. Dobson, eds.) John Wiley and Sons, Hoboken, NJ. pp. 487-515.

Moreau KL and King J. (2009) Hydrophobic core mutations associated with cataract development in mice destabilize human γD-Crystallin. J.Biol.Chem., 284(48): 33285-33295.

Xu J, Chen J, Toptygin D, Tcherkasskaya O, Callis P, King J, Brand L, Knutson J. (2009) Femtosecond fluorescence spectra of Tryptophan in human γ-Crystallin mutants: site-dependent ultrafast quenching. J.Am.Chem.Soc., 131 (46), 16751-16757.

Jung J, Byeon I-JL, Wang Y, King J and Gronenborn AM. (2009) The structure of the cataract causing P23T mutant of HγD-Crystallin exhibits local distinctive conformational and dynamic changes. Biochemistry, 48 (12): 2597-2609.

Chen J, Callis PR and King J. (2009) Mechanism of the very efficient quenching of tryptophan fluorescence in human γD- and γS-crystallins: the γ-crystallin fold may have evolved to protect tryptophan residues from ultraviolet photodamage. Biochemistry, 48 (17): 3708-3716.

Chen J, Toptygin D, Brand L and King J. (2008) Mechanism of the efficient tryptophan fluorescence quenching in human γD-crystallin studied by time-resolved fluorescence. Biochemistry, 47, 10705-10721.

Papanikolopoulou, K., Mills, I.A., Flaugh, S.L.., Wang, Y., Gross, A.A.R., Kirschner, D.A., Decatur, S.M. and King, J.A. (2008) Formation of amyloid fribrils in vitro by human γD-crystallin and its isolated domains. Molecular Vision, 14, 81-89. http://www.molvis.org/molvis/v14/a10

Mills IA, Flaugh SL, Kosinski-Collins MS and King J. (2007) Folding and stability of the isolated greek key domains of the long-lived human lens proteins, γD-crystallin and γS-crystallin. Protein Science, 16, 2427-2444.

Flaugh SL, Mills IA and King J. (2006) Glutamine deamidation destabilizes human γD-crystallin and lowers the kinetic barrier to unfolding. J.Biol.Chem., 281, 30782-30793.

Chen J, Flaugh SL, Callis PR and King J. (2006) Mechanism of the highly efficient quenching of tryptophan fluorescence in human γD-crystallin. Biochemsitry, 45, 11552-11563.

Flaugh SL, Kosinski-Collins MS and King J. (2005) Interdomain side-chain interactions in human γD crystallin influencing folding and stability. Protein Science, 14, 2030-2043.

Flaugh SL, Kosinski-Collins MS and King J. (2005) Contributions of hydrophobic domain interface interactions to the folding and stability of human γD-crystallin. Protein Science, 14, 569-581.

Kosinski-Collins M, Flaugh S and King J. (2004)Probing folding and fluorescence quenching in Human γ-D crystallin Greek key domains using Triple Tryptophan mutant proteins. Protein Science, 13, 2223-2235.

Kosinski-Collins M and King J. (2003) In vitro unfolding and refolding of human γ-D crystallin, a protein involved in cataract formation. Protein Science, 12, 480-490.

Pande A, Pande J, Asherie N, Lomakin A, Ogun O, King J and Benedek GB. (2001)Crystal cataracts: Human genetic cataract caused by protein crystallization. PNAS, 98, 6116-6120.

Asherie N, Pande J, Pande A, Zarutskie JA, Lomakin J, Lomakin A, Ogun O, Stern LJ, King J and Benedek GB. (2001) Enhanced Crystallization of the Cys18 to Ser Mutant of Bovine B Crystallin. J. Mol.Biol., 314, 663-669.

Pande A, Pande J, Aserie N, Lomakin A, Ogun O, King J, Lubsen N, Walton D and Benedek G. (2000) Molecular basis of a progresssive juvenile-onset hereditary cataract. PNAS, 97, 1993-1998.


Virus Structure & Assembly

Dai W, Schmid MF, King JA and Chiu W. (2014) Identifying the assembly pathway of cyanophage inside the marine bacterium using electron cryo-tomography. Microb Cell, 1(1): 45-47.

Gipson P, Baker ML, Raytcheva D, Haase-Pettingell C, Piret J, King JA and Chiu W. (2014) Protruding knob-like proteins violate local symmetries in an icosahedral marine virus. Nature Communications, 5:4278. doi: 10.1038/ncomms5278.

Raytcheva DA, Haase-Pettingell C, Piret J, King JA. (2014) Two Novel Proteins of Cyanophage Syn5 Compose Its Unusual Horn Structure. J Virol. 88, 2047-2055.

Dai W, Fu C, Raytcheva D, Flanagan J, Khant HA, Liu X, Rochat RH, Caase-Pettingell C, Piret J, Ludtke SJ, Nagayama K, Schmid MF, King JA and Chiu W. (2013) Visualizing virus assembly intermediates inside marine cyanobacteria. Nature, 502, 707-710.

Zhu B, Tabor S, Raytcheva DA, Hernandez A, King JA and Richardson CC. (2013) The RNA polymerase of marine cyanophage Syn5. J.Bio.Chem., 288(5):3545-3552. doi:10.1074/jbc.M112.442350

Takata T, Haase-Pettingell C and King J. (2012) The C-terminal cysteine annulus participates in auto-chaperone function for Salmonella phage P22 tailspike folding and assembly. Bacteriophage, 2(1), 36-49.

Carvalho CM, Kropinski AM, Lingohr EJ, Santos SB, King J and Azeredo J. (2012) The genome and proteome of a Campylobacter coli bacteriophage vB_CcoM-IBB_35 reveal unusual features. Virology J., 9: 35.

Chen D-H, Baker ML, Hryc CF, DiMaio F, Jakana J, Wu W, Dougherty M, Haase-Pettingell C, Schmids MF, Jiang W, Baker D, King JA and Chiu W. (2011) Structural basis for scaffolding-mediated assembly and maturation of a dsDNA virus. PNAS, 108, 1355-1360.

Raytcheva DA, Haase-Pettingell C, Piret JM and King J. (2011) Intracellular assembly of Cyanophage Syn5 proceeds through a scaffold-containing procapsid. J. Virology, 85, 2406-2415.

Chang JT, Schmid MF, Haase-Pettingell C, Weigele PR, King JA and Chiu W. (2010) Visualizing the structural changes of bacteriophage Epsilon15 and its Salmonella host during infection. J.Mol.Biol., 402, 731-740.

Murata K, Liu X, Danev R, Jakana J, Schmid MF, King J, Nagayama K and Chiu W. (2010) Zernike phase contrast cryo-electron microscopy and tomography for structure determination at nanometer and subnanometer resolutions. Structure, 18(8), 902-912.

Jiang W, Baker ML, Jakana J, Weigele PR, King J and Chiu W. (2008) Backbone structure of the infectious e 15 virus capsid revealed by electron cryomicroscopy. Nature, 451, 1130-1135.

Weigele PR, Pedulla ML, Houtz JM, Smith AL, Conway JF, King J, Hatfull GF, Lawrence JG and Hendrix RW. (2007) Genomic and structural analysis of Syn9, a cyanophage infecting marine Prochlorococcus and Synechococcus. Environ. Microbiol., 9, 1675-1695.

Pope WH, Weigele PR, Chang J, Pedulla ML, Ford ME, Houtz JM, Jiang W, Chiu W, Hatfull GF, Hendrix RW and King J. (2007) Genome sequence, structural proteins and capsid organization of the Cyanophage Syn5: A "Horned" bacteriophage of marine Synechococcus. J. Mol. Biol., 368, 966-981.

Chang J, Weigele P, King J, Chiu W and Jiang W. (2006) Cryo-EM asymmetric reconstruction of bacteriophage P22 reveals organization of its DNA packaging and infecting machinery. Structure, 14, 1073-1082.

Jiang W, Chang J, Jakana J, Weigele P, King J and Chiu W. (2006) Structure of complete Epsilon 15 phage reveals organization of condensed DNA and DNA packaging/injection apparatus. Nature, 439, 612-616. [Download two supplements to the article. The first is in Word; second is in Powerpoint. Read a review in Microbe (ASM News), vol. 1, no. 4 (2006) by David Holzman.]

Gossard DC and King J. (2005) Lattice transformations and subunit conformational changes in phage capsid maturation. J. of Theoretical Med., 6, 99-105.

Pope W, Haase-Pettingell C and King J. (2004) Protein folding failure sets the high temperature limit on the growth of phage P22 in Salmonella serovar Typhimurium. Applied & Environmental Microbiology, 70, 4840-4847.

Weigele PR, Scanlon E and King J. (2003) Homo-trimeric, β-stranded viral adhesins and tail proteins. J. Bacteriology, 185, 4022-4030.

Kamei D, King J, Wang DIC and Blankschtein D. (2002) Separating lysozyme from bacteriophage P22 in two-phase aqueous micellar systems. Biotech & Bioeng, 80, 233-236.

Kamei D, Liu C, Haase-Pettingell C, King J, Wang DIC and Blancschtein D. (2002) Undertanding viral partitioning in two-phase aqueous nonionic micellar systems: 1. role of attractive interatctions between viruses and micelles. Biotech & Bioeng.,78, 190-202.

Kamei D, Liu C, Haase-Pettingell C, King J, Wang DIC and Blankschtein D. (2002) Understanding viral partitioning in two-phase aqueous nonionic micellar systems: 2.Effect of entrained micelle-poor domains. Biotech & Bioeng, 78, 203-21

Zhang Z, Greene B, Thuman-Commike PA, Jakana J, Prevelige PE, King J and Chiu W. (2000) Visualization of the maturation transition in bacteriophage P22 electron cryomicroscopy. J. Mol Biol., 297, 615-626.

Berger B, King J., Schwartz RS and Shor PW. (2000) Local Rule Mechanism for Selecting Icosahedral Shell Geometry. Discrete Applied Mathematics, 105, 55-69.

Greene B and King J. (1999) In vitro unfolding/refolding of wild type phage P22 scaffolding protein reveals capsid binding domain. J. Biol. Chem., 274, 16135-16140.

Greene B and King J. (1999) Folding and stability of mutant scaffolding proteins defective in phage capsid assembly. J. Biol.Chem., 274, 16141-16146.

Thuman-Commike PA, Tsuruta H, Greene B, Prevelige PE, King J and Chiu W. (1999) Solution X-ray scattering based estimation of electron cryomicroscopy imaging parameters for reconstruction of virus particles. Biophysical J., 76, 2249-2261.

Thuman-Commike PA, Greene B, Malinski J, King J and Chiu W. (1998) Role of the Scaffolding Protein in P22 Procapsid Size Determination Suggested by T=4 and T=7 Procapsid Structures. Biophysical J., 74, 559-568.

Liu C, Kamei DT, King J, Wang DIC and Blankschtein D. (1998) Separation of proteins and viruses using two-phase aqueous micellar systems. J. Chromatogr. B, 711(1-2), 127-138.

King J and Chiu W. (1997) The Procapsid to Capsid Transition in Double-stranded DNA Bacteriophages. In Structural Biology of Viruses (W. Chiu, R.M. Burnett and R. Garcea, eds.) Oxford University Press, pp. 288-311. No abstract available.

Thuman-Commike P, Greene B, Jakana J, Prasad BVV, King J, Prevelige PE Jr, and Chiu W. (1996) Three-dimensional Structure of Scaffolding-containing Phage P22 Procapsids by Electron Cryo-microscopy. J. Mol. Biol., 260, 85-98.

Greene B and King J. (1996) Scaffolding mutants identifying domains required for P22 procapsid assembly and maturation. Virology, 225, 82-96.

Foguel D, Teschke CM, Prevelige PE Jr and Silva JL. (1995) Role of entropic interactions in viral capsids: Single amino acid substitutions in P22 bacteriophage coat protein resulting in loss of capsid stability. Biochem., 34, 1120-1126.

Berger B, Shor PW, Tucker-Kellogg L and King J. (1994) A local rule based theory of virus shell assembly. Proceedings of the National Academy of Sciences, 91, 7732-7736.

Greene B and King J. (1994) Binding of Scaffolding Subunits Within the P22 Procapsid Lattice. Virology, 205, 188-197.

Prevelige PE Jr, King J, Silva JL (1994) Pressure denaturation of the bacteriophage P22 coat protein and its entropic stabilization in icosahedral shells. Biophys J., 66(5), 1631-1641.

Prevelige P, Thomas D and King J. (1993) Nucleation and Growth Phases in the Polymerization of Coat and Scaffolding Subunits into Icosahedral Procapsid Shells. Biophysical Journal, 64, 824-835.

Prevelige P and King J. (1993) Assembly of Bacteriophage P22: A Model for sd-DNA Virus Assembly. In: Progress in Medical Virology, Vol. 40 (ed. J.L. Melnick) Karger, Basel, pp. 206-221. No abstract available.

Gordon C and King J. (1993) Temperature Sensitive Mutations in the P22 Coat Protein Which Interfere with Polypeptide Chain Folding. J. Biol. Chem., 268, 9358-9368.

Prasad BV, Prevelige P, Marietta E, Chen R, Thomas D, King J and Chiu W. (1993) Three-Dimensional Transformation of Capsids Associated with Genome Packaging in a Bacterial Virus. J. Mol. Biol., 231, 65-74.

Galisteo ML and King J. (1993) Conformational Transformations in the Protein Lattice of Phage P22 Procapsids. Biophysical Journal, 65, 227-235.

Teschke C and King J. (1993) Folding of the Phage P22 Coat Protein in vitro. Biochemistry, 32, 10839-10847.

Teschke CM, King J and Prevelige PE, Jr. (1993) Inhibition of capsid assembly by 1,1'-bi(4-anilino)naphthalene-5,5'-disulfonic acid. Biochemistry, 32, 10658-10665.

Thomas D, and Prevelige PE, Jr. (1991) A pilot protein participates in the initiation of P22 procapsid assembly. Virology, 182, 673-681.

Prevelige PE Jr, Thomas D, King J, Towse SA and Thomas GJ Jr. (1990) Conformational states of the bacteriophage P22 capsid subunit in relation to self-assembly. Biochem., 29, 5626-5633.

Bazinet C, Villafane R and King J. (1990) Novel second-site suppression of cold-sensitive defect in phage P22 procapsid assembly. J. Mol. Biol., 216, 701-716.

Bazinet C, Benbaset J, King J, Carazo J and Carrascosa J. (1988) Purification and Organization of the Gene l Portal Protein Required for Phage P22 DNA Packaging Biochem., 27, 1849-l856.

Bazinet C and King J. (1988) Initiation of P22 Procapsid Assembly in vivo. J. Mol. Biol., 202, 77-86.

Prevelige P, Thomas D and King J. (1988) Scaffolding Protein Regulates the Polymerization of P22 Coat Subunits into Icosahedral Shells in vivo. J. Mol. Biol., 202: 743-757.

Loechler EL and King J. (1986) Identification of the 9-aminoacridine/DNA complex responsible for photodynamic inactivation of P22. Biochemistry, 25(20), 5858-64.

Hartweig E, Bazinet C and King J. (1986) DNA injection apparatus of phage P22. Biophys. J., 49, 24-26. No abstract available.

Bazinet CW and King J. (1985) A late gene product of phage P22 affecting virus infectivity. Virology, 143(2), 368-79.

Bazinet C and King J. (1985) The DNA translocating vertex of dsDNA bacteriophage. Ann. Rev. Microbiol., 39, 109-129.

Casjens S, Adams MB, Hall C and King J. (1985) Assembly-controlled autogenous modulation of bacteriophage P22 scaffolding protein gene expression. J Virol, 53(1), 174-9.

Bryant JL Jr. and King J. (1984) DNA injection proteins are targets of acridine-sensitized photoinactivation of bacteriophage P22. J Mol Biol., 180(4), 837-63.

Strauss H and King J. (1984) Steps in the stabilization of newly packaged DNA during phage P22 morphogenesis. J Mol Biol, 172(4), 523-43.

Thomas GJ, Jr, Li Y, Fuller MT and King J. (1982) Structural studies of P22 phage, precursor particles, and proteins by laser Raman spectroscopy. Biochemistry, 21(16), 3866-3878.

Fuller MT and King J. (1982) Assembly in Vitro of bacteriophage P22 procapsids from purified coat and scaffolding subunits. J Mol Biol., 156(3), 633-665.

Fuller MT and King J. (1981) Purification of the coat and scaffolding proteins from procapsids of bacteriophage P22. Virology, 112(2), 529-547.

Youderian P and King J. (1981) New genes in the left arm of the bacteriophage ø80 Chromosome. J. Virology, 37, 976-986.

Li Y, Thomas GJ Jr, Fuller MT and King J. (1981) Investigations of bacteriophage P22 by laser Raman spectroscopy. In: Bacteriophage Assembly (M. Dubow, ed) Alan R. Liss, Inc., NY, pp. 271-283.

King J. (1980) Genetic control of organelle assembly at the molecular level: I. Introduction: from genes to organelles. In: The Quarterly Review of Biology, vol 55, no. 4. The Stony Brook Foundation, NY, pp. 329-333. No abstract available.

King J, Griffin-Shea R and Fuller MT. (1980) Scaffolding proteins and the genetic control of virus shell assembly. Q Rev Biol., 55(4), 369-93.

Fish SR, Hartman KA, Fuller MT, King J. and Thomas GJ, Jr. (1980) Investigation of secondary structures and macromolecular interactions in bacteriophage P22 by laser Raman spectoscopy. Biophysical J., 32, 234-237.

Fuller MT and King J. (1980) Regulation of coat protein polymerization by the scaffolding protein of bacteriophage P22. Biophys J., 32(1), 381-401.

King J. (1980) Regulation of structural protein interactions as revealed in phage morphogenesis. In: Biological Regulation and Development, Vol. 2 (ed. R. F. Goldberger) Plenum Publishing Corp., pp. 101-132. No abstract available.

Wood WB and King J. (1979) Genetic control of complex bacteriophage assembly. In: Comprehensive Virology, vol 13: Structure & Assembly: Primary, Secondary, Tertiary, and Quaternary Structures (H. Fraenkel-Conrat and R.R. Wagner, eds.) Plenum Press, NY, pp. 581-633. No abstract available.

Earnshaw, W.C., Hendrix, R.W. and King, J. (1979) Structural studies of bacteriophage Lambda heads and proheads by small angle x-ray diffraction. J. Mol. Biol., 134, 575-594.

Earnshaw, W. and King, J. (1978) Structure of phage P22 coat protein aggregates formed in the absence of the scaffolding protein. J Mol Biol., 126(4), 721-747.

King J, Hall C and Casjens S. (1978) Control of the synthesis of phage P22 scaffolding protein is coupled to capsid assembly. Cell, 15(2), 551-560.

Berget PB and King J. (1978) Isolation and characterization of precursors in T4 baseplate assembly: The complex of gene 10 and gene 11 products. J Mol Biol,. 124(3), 469-486.

Earnshaw WC, King J, Harrison SC, Eiserling FA (1978) The structural organization of DNA packaged within the heads of T4 wild-type, isometric and giant bacteriophages. Cell,14(3), 559-568.

Earnshaw WC, King J and Eiserling, FA (1978) The size of the bacteriophage T4 head in solution with comments about the dimension of virus particles as visualized by electron microscopy. J Mol Biol., 122(2), 247-253.

Berget PB and King J. (1978) Antigenic gene products of bacteriophage T4 baseplates. Virology, 86(2), 312-328.

Poteete AR and King J. (1977) Functions of two new genes in Salmonella phage P22 assembly. Virology, 76(2), 725-739.

Crowther RA, Lenk EV, Kikuchi Y and King J. (1977) Molecular reorganization in the hexagon to star transition of the baseplate of bacteriophage T4. J Mol Biol., 116(3), 489-523.

King J, Botstein D, Casjens S, Earnshaw W, Harrison S and Lenk E. (1976) Structure and assembly of the capsid of bacteriophage P22. Philos Trans R Soc Lond B Biol Sci., 276, 37-49.

Kikuchi Y and King J. (1976) Assembly of the contractile tail of baceriophage T4. Cell Motility, 71-91. No abstract available.

Lenk E, Casjens S, Weeks J and King J. (1975) Intracellular visualization of precursor capsids in phage P22 mutant infected cells. Virology, 68(1), 182-99.

Kikuchi Y and King J. (1975) Genetic control of bacteriophage T4 baseplate morphogenesis. I. Sequential assembly of the major precursor, in vivo and in vitro. J Mol Biol., 99(4) 645-672.

Kikuchi Y and King J. (1975) Genetic control of bacteriophage T4 baseplate morphogenesis. II. Mutants unable to form the central part of the baseplate. J Mol Biol., 99(4) 673-694.

Kikuchi Y and King J. (1975) Genetic control of bacteriophage T4 baseplate morphogenesis. III. Formation of the central plug and overall assembly pathway. J Mol Biol., 99(4) 695-716.

Kikuchi Y and King J. (1975) Assembly of the tail of bacteriophage T4. J Supramol Struct., 3(1), 24-38.

Casjens S and King J. (1975) Virus Assembly. Ann. Rev. Biochemistry, 44, 555-611. No abstract available.

Casjens S and King J. (1974) P22 morphogenesis. I: Catalytic scaffolding protein in capsid assembly. J Supramol Struct., 2(2-4), 202-24.

King J and Casjens S. (1974) Catalytic head assembling protein in virus morphogenesis. Nature, 251, 112-119.

King J, Lenk EV and Botstein D. (1973) Mechanism of head assembly and DNA encapsulation in Salmonella phage P22. II. Morphogenetic pathway. J Mol Biol., 80(4), 697-731.

Botstein D, Waddell CH and King J. (1973) Mechanism of head assembly and DNA encapsulation in Salmonella phage p22. I. Genes, proteins, structures and DNA maturation. J Mol Biol., 80(4), 669-695.

King J and Mykolajewycz N. (1973) Bacteriophage T4 tail assembly: proteins of the sheath, core and baseplate. J Mol Biol., 75(2), 339-358.

King J and Laemmli UK. (1973) Bacteriophage T4 tail assembly: structural proteins and their genetic identification. J Mol Biol., 75(2), 315-337.

King J, Fitten R, Mykolajewycz N and Floor E. (1973) Genetic control of T4 tail assembly. In: Virus Research (C.F. Fox and W.S. Robinson, eds.) Acdemic Press, NY, pp 259-277.

King J and Laemmli UK. (1971) Polypeptides of the tail fibres of bacteriophage T4. J Mol Biol. 62(3), 465-477.

King J. (1971) Bacteriophage T4 tail assembly: four steps in core formation. J Mol Biol., 58(3), 693-709.

King J. (1970) Steps in T4 tail core assembly. FEBS Symposium, 21, 171-180.

King J and Wood WB. (1969) Assembly of bacteriophage T4 tail fibers: the sequence of gene product interaction. J Mol Biol., 39(3), 583-601.

Wood WB, Edgar RS, King J, Lielausis I and Henniger M. (1968) Bacteriophage assembly. Fed. Proc, 27, 1160-1166. No abstract available.

King J. (1968) Assembly of the tail of bacteriophage T4. J Mol Biol., 32(2), 231-262. No abstract available.


Protein Folding & Stability

Serebryany E and King JA (2015) Wild-type human γD-crystallin promotes aggregation of its oxidation-mimicking, misfolding-prone W42Q mutant. J Biol Chem, 290(18):11491-11503. doi: 10.1074/jbc.M114.621581.

Sergeeva OA, Tran MT, Haase-Pettingell C and King JA. (2014) Biochemical Characterization of Mutants in Chaperonin Proteins CCT4 and CCT5 Associated with Hereditary Sensory Neuropathy. J Biol Chem, 289(40), 27470-27480. doi: 10.1074/jbc.M114.576033

Serebryany E and King JA. (2014) The βγ-crystallins: Native state stability and pathways to aggregation. Prog Biophys and Mol Biol ("Crystallins of the Eye"), 115(1), 32-41. May 14 DOI: 10.1016/j.pbiomolbio.2014.05.002

Yang Z, Xia Z, Huynh T, King JA and Zhou R. (2013) Dissecting the contributions of b-hairpin tyrosine pairs to the folding and stability of long-lived human γD-crystallins. Nanoscale, doi:10.1039/c3nr03782g. (Royal Society of Chemistry)

Xia Z, Yang Z, Huynh T, King JA and Zhou R. (2013) UV-radiation induced disruption of dry-cavities in Human γ-D-cyrstallin results in decreased stability and faster unfolding. Nature Scientific Reports, 3, article 1560. doi:10.1038/srep01560

Sergeeva OA, Chen B, Haase-Pettingell C, Ludtke SJ, Chiu W and King JA (2013) Human CCT4 and CCT5 chaperonin subunits expressed in E. coli form biologically active homo-oligomers. J.Biol.Chem., 288, 17734-17744.

Knee K, Sergeeva OA and King J. (2013) Human TRiC complex purified from HeLa cells contains all eight CCT subunits and is active in vitro. Cell Stress and Chaperones, 18(2): 137-144. Epub: September 26, DOI: 10.1007/s12192-012-0357-z.

Takata T, Haase-Pettingell C and King J. (2012) The C-terminal cysteine annulus participates in auto-chaperone function for Salmonella phage P22 tailspike folding and assembly. Bacteriophage, 2(1), 36-49.

Moreau KL and King JA. (2012) Cataract-causing defect of a mutant γ-Crystallin proceeds through an aggregation pathway wich bypasses recognition by γ-Crystallin chaperone. PLOS One, 17(5) e37256. Epub 2012 May 24.

Moreau KL and King JA. (2012) Protein misfolding and aggregation in cataract disease and prospects for prevention. Trends in Mol. Med., May 18(5), 273-282. Epub 2012 Apr 19.

Pereira JH, Ralston CY, Douglas NR, Kumar R, Lopez T, McAndrew RP, Knee KM, King JA, Frydman J and Adams PD. (2012) Mechanism of nucleotide sensing in group II Chaperonins. EMBO J, 31, 731-740.

Das P, King JA and Zhou R. (2011) Aggregation of γ-crystallins associated with human cataracts via domain swapping at the C-terminal β-strands. PNAS, 108, 10514-10519.

Goulet DR, Knee KM and King JA. (2011) Inhibition of unfolding and aggregation of lens protein human γD-crystallin by sodium citrate. Exp. Eye Res., 93(4), 371-381.

Kong F and King J. (2011) Contributions of aromatic pairs to the folding and stability of long-lived human γD-crystallin. Protein Science, 20, 513-528.

Pereira JH, Ralston CY, Douglas NR, Meyer D, Knee KM, Goulet DR, King JA, Frydman J and Adams PD. (2010) Crystal structures of a group II chaperonin reveal the open and closed states associated with the protein folding cycle. J.Biol.Chem., 285, 27958-17966.

Dudek EJ, Lampi KJ, Lampi JA, Shang F, King J, Wang Y and Taylor A. (2010) Ubiquitin proteasome pathway-mediated degradation of proteins: effects due to site-specific substrate deamidation. IOVS, 51, 4164-4143.

Das P, King JA and Zhou R. (2010) β-strand interactions at the domain interface critical for the stability of human lens γD-crystallin. J. Biol. Chem., 284, 33285-33295.

Simkovsky R and King J. (2006) An elongated spine of buried core residues necessary for in vivo folding of the parallel b -helix of P22 tailspike adhesin. PNAS, 103, 3575-3580.

Weigele P, Haase-Pettingell C, Campbell PG, Gossard DC and King J. (2005) Stalled folding mutants in the triple beta-helix domain of the phage P22 tailspike adhesin. J.Mol.Biol., 354, 1103-1117.

Jain M, Evans MS, King J and Clark PL. (2005) Monoclonal epitope mapping describes tailspike beta-helix folding and aggregation intermediates. J.Biol.Chem., 280, 23032-23040.

Betts S, Haase-Pettingell C, Cook K and King J. (2004) Buried hydrophobic side chains essential for the folding of the parallel beta-helix domains of the P22 tailspike. Protein Science, 13, 2291-2303.

Weigele PR, Scanlon E and King J. (2003) Homo-trimeric, ß-stranded viral adhesins and tail proteins. J. Bacteriology, 185, 4022-4030.

King J, Haase-Pettingell C and Gossard D. (2002) Protein Folding and Misfolding. American Scientist, 90, 445-453.

Kreisberg JF, Betts SD, Haase-Pettingell C and King J. (2002) The interdigitated beta-helix domain of the P22 tailspike protein acts as a molecular clamp in trimer stabilization. Protein Science, 11, 820-830.

Benton CB, Clark PL and King J. (2002) Characterization of the protrimer intermediate in the folding pathway of the interdigitated ß-helix tailspike protein. Biochemistry,41, 5093-5103.

Griffiths SW, King J and Cooney CL. (2002) The reactivity and oxidation pathway of Cysteine 232 in Recombaninant human alpha1-Antitrypsin. J. Biol. Chem., 277, 25486-25492.

Clark PL and King J. (2001) A newly synthesized, Ribosome-bound polypeptide chain adopts conformations dissimilar from early in vitro refolding intermediates. J. Biol. Chem., 276, 25411-25420.

Raso SW, Clark PL, Haase-Pettingell C, King J and Thomas GJ, Jr. (2001) Distinct Cysteine sulfhydryl environments detected by analysis of Raman S-H markers of Cys –> Ser mutant proteins. J. Mol. Biol., 307, 899-911.

Haase-Pettingell C, Betts S, Raso SW, Stuart L, Robinson A and King J. (2001) Role for Cysteine Residues in the In Vivo Folding and Assembly of the Phage P22 Tailspike. Protein Science, 10, 397-410.

Kreisberg JF, Betts SD and King J. (2000) β-helix core packing within the triple-stranded oligomerizatin domain of the P22 tailspike. Protein Science, 9, 2338-2343.

Greene B and King J. (1999) In vitro unfolding/refolding of wild type phage P22 scaffolding protein reveals capsid binding domain. J. Biol. Chem., 274, 16135-16140.

Greene B and King J. (1999) Folding and stability of mutant scaffolding proteins defective in phage capsid assembly. J. Biol.Chem., 274, 16141-16146.

Betts S and King J. (1999) There's a right way and a wrong way: in vivo and in vitro folding, misfolding and subunit assembly of the P22 tailspike. Structure, 7, R131-R139.

King J and Betts S. (1999) A green light for protein folding. Nature Biotech., 17, 637-638.

Betts S and King J. (1998) Cold rescue of the thermolabile tailspike intermediate at the junction between producitve folding and off-pathway aggregation. Protein Sci., 7, 1516-1523.

Konz JO, King J and Cooney CL. (1998) The effects of Oxygen on Recombinant Protein Expression. Biotech. Progress, 14, 393-409.

Speed M, Morshead T, Wang D and King J. (1997) Conformation of P22 tailspike folding and aggregation intermediates probed by monoclonal antibodies. Protein Science, 6, 99-108.

Haase-Pettingell C and King J. (1997) Prevalence of temperature sensitive folding mutations in the parallel beta coil domain of the phage P22 tailspike endorhamnosidase. J. Mol. Biol., 267, 88-102.

King J. (1997) Refolding with a piece of the ring. Nature Biotechnology, 15, 514-515. No abstract available.

Robinson AS and King J. (1997) Disulfide-bonded intermediate on the folding and assembly pathway of a non-disulphide bonded protein. Nature Structural Biol., 4, 450-455.

Fan ZH, Jensen PK, King J and Lee CS. (1997) Monitoring the refolding pathway for a large multimeric protein using capillary zone electrophoresis. J. Chromatography, 769, 315-323.

King J. (1996) Unexpected Pathways to protein stabilization. Nature Biotechnology, 14, 436. No abstract available.

King J, Haase-Pettingell C, Robinson A, Speed MA and Mitraki A. (1996) Thermolabile folding intermediates: Inclusion body precursors and chaperonin substrates. FASEB Journal, 10, 57-66.

Teschke CM and King J. (1995) In Vitro folding of phage P22 coat protein with amino acid substitutions that confer in vivo tempertaure-sensitivity. Biochemistry, 34, 6815-6826.

Galisteo, M.L., Gordon, C.L. and King, J. (1995) Stability of wild-type and temperature-sensitive protein subunits of the phage P22 capsid. Biol. Chem., 270, 16595-16601.

Gordon, C. and King, J. (1994) Genetic properties of temperature sensitive folding mutants of the coat protein of phage P22. GENETICS, 136, 427-438.

Friguet B, Djavadi-Ohaniance L, King J and Goldberg M. (1994) In Vitro and ribosome bound folding intermediates of P22 tailspike protein detected with monoclonal antibodies. J. Biol. Chem., 269, 15945-15949.

Sather S and King J. (1994) Intracellular Trapping of a Cytoplasmic folding Intermediate of the Phage P22 Tailspike Using Iodoacetamide. J. Biol. Chem., 269, 25268-25276.

Gordon C, Sather S, Casjens S and King J. (1994) Selective In Vivo Rescue by GroEL/ES of Thermolabile Folding Intermediates of Phage P22 Structural Proteins. J. Biol. Chem., 269, 27941-27951.

King J, Haase-Pettingell C, Gordon C, Sather S and Mitraki A. (1993) Amino Acid Sequence Determinants of Polypeptide Chain Folding and Inclusion Body Formation. In Protein Folding: In Vivo and In Vitro (ed. J. Cleland) ACS Symposium Series 526, American Chemical Society, Washington, D.C., pp. 24-37.

Gordon C and King J. (1993) Temperature Sensitive Mutations in the P22 Coat Protein Which Interfere with Polypeptide Chain Folding. J. Biol. Chem., 268, 9358-9368.

King J. (1993) The Unfolding Puzzle of Protein Folding. Technology Review, 96(4), 54-61. No abstract available.

Teschke C and King J. (1993) Folding of the Phage P22 Coat Protein in vitro. Biochemistry, 32, 10839-10847.

Mitraki A, Danner M, King J and Seckler R. (1993) Temperature-sensitive Mutations and Second-site Suppressor Substitutions Affect Folding of the P22 Tailspike Protein in Vitro. J. Biol. Chem, 268, 20071-20075.

Mitraki A and King J. (1992) Amino acid substitutions influencing intracellular protein folding pathways. FEBS Letters, 307, 20-25.

Teschke C and King J. (1992) Folding and assembly of oligomeric proteins in Escherichia coli. Current Opinion in Biotechnology, 3, 468-473.

Fane B and King J. (1991) Intragenic suppressors of folding defects in the P22 tailspike protein. Genetics, 127, 263-277.

Chen B and King J. (1991) Thermal unfolding pathway for the thermostable P22 tailspike endorhamnosidase. Biochemistry, 30, 6260-6269.

Fane B, Villafane R, Mitraki A and King J. (1991) Identification of global suppressors for temperature sensitive folding mutants of the P22 tailspike protein. J. Biol. Chem., 261, 11640-11648.

Mitraki A, Fane B, Haase-Pettingell C, Sturtevant J and King J. (1991) Global suppression of protein folding defects and inclusion body formation. Science, 253, 54-58.

Chen B and King J. (1991) Pathway for the thermal unfolding of wild type and mutant forms of the thermostable P22 tailspike endorhamnosidase. In Protein Refolding (G. Georgiou & E. de Bernardez Clark, eds.) ACS Symposium Series 470, American Chemical Society, Washington, D.C., pp. 119-132.

Mitraki, A., Fane, B., Haase-Pettingell, C. and King, J. (1991) Mutations affecting protein folding and misfolding in vivo. In Application in Enzyme Biotechnology (eds. T. Baldwin and J. Kelly) Plenum Press, pp. 129-136. No abstract available.

King J, Fane B, Haase-Pettingell C, Mitraki A and Villafane R. (1990) Genetic analysis of polypeptide chain folding and misfolding in vivo. In Protein Design and the Development of New Therapeutics and Vaccines. (Ed. Jerry Hook & George Poste) Smith Kline and French Symposium, Plenum Press, 59-78. No abstract available.

Thomas GJ Jr, Becka R, Sargent D, Yu M-H and King J. (1990) Conformational stability of P22 Tailspike Proteins Carrying Temperature Sensitive Folding Mutations. Biochem., 29, 4181-4187.

Friguet B, Djavadi-Ohaniance L, Haase-Pettingell C, King J and Goldberg M. (1990) Properties of monoclonal antibodies selected for probing the conformation of wild type and mutant forms of the P22 tailspike endorhamnosidase. J. Biol. Chem., 265, 10347-10351.

Gierasch LA and King J. (1990) Protein Folding: Deciphering the Second Half of the Genetic Code. American Association for the Advancement of Science, Wash. D.C.

King J, Fane B, Haase-Pettingell C, Mitraki A, Villafane R and Yu M-H. (1990) Identification of amino acid sequences influencing intracellular folding pathways using temperature sensitive folding mutations. In Protein Folding: Deciphering the Second Half of the Genetic Code (L. A. Gierasch and J. King, eds.) AAAS, pp 225-240. No abstract available.

Mitraki A and King J. (1989) Protein folding intermediates and inclusion body formation. Bio/technology, 7, 690-697.

Sturtevant J, Yu M-H, Haase-Pettingell C and King J. (1989) Thermostability of temperature sensitive folding mutants of the P22 tailspike protein. J. Biol. Chem., 264, 10693 - 10698.

King J. (1989) Deciphering the rules of protein folding. Chem. & Eng. News, 67, April 11, 32-54. No abstract available.

Seckler R, Fuchs A, King J and Jaenicke R. (1989) Reconstitution of the thermostable trimeric phage P22 tailspike protein from denatured chains in vitro. J. Biol. Chem., 264, 11750-11753.

Yu M-H and King J. (1988) Surface Amino Acids as Sites of Temperature Sensitive Folding Mutations in the P22 Tailspike Protein J. Biol. Chem., 263( 3), 1424-1431.

Sargent D, Benevides JM, Yu M-H, King J and Thomas GJ Jr. (1988) Secondary Structure and Thermostability of the Phage P22 Tailspike: Analysis by Raman Spectroscopy of the Wild-Type Protein and a Temperature-Sensitive Folding Mutant. J. Mol. Biol., 199, 491-502.

Villafane R and King J. (1988) Nature and Distribution of Sites of Temperature Sensitive Folding Mutations in the Gene for the P22 Tailspike Polypeptide Chain. J. Mol. Biol., 204, 607 - 619.

King J, Haase C and Yu M-H (1987) Temperature-sensitive mutations affecting kinetic steps in protein-folding pathways. In: Protein Engineering: Tutorials in molecular and cell biology (ed. D.L. Oxender and C.F. Fox)Alan R. Liss, Inc., NY, pp 109-121. No abstract available.

Fane B and King J. (1987) Identification of sites influencing the folding and subunit assembly of the P22 tailspike polypeptide chain using nonsense mutations. Genetics, 117(2), 157-171.

Wackett LP, Hartwieg EA, King JA, Orme-Johnson WH and Walsh CT. (1987) Electron microscopy of nickel-containing methanogenic enzymes: methyl reductase and F420-reducing hydrogenase. J. Bacteriol., 169, 718-727.

King J. (1986) Genetic analysis of protein folding pathways. Bio/Technology, 4, 297-303.

King J, Yu M-H, Siddiqi J and Haase C. (1986) Genetic identification of amino acid sequences infuencing protein folding. In: Protein Engineering: Applications in Science, Medicine, and Industry (ed. M. Inouye & R. Sarma) Academic Press, Inc., NY, pp 275-291. No abstract available.

King J and Yu M-H (1986) Mutational analysis of protein folding pathways: the P22 tailspike endorhamnosidase. Methods Enzymol, 131, 250-266. No abstract available.

Yu M-H and King J. (1984) Single amino acid substitutions influencing the folding pathway of the phage P22 tailspike endorhamnosidase. Proc Natl Acad Sci U S A, 81(21), 6584-6588.

Smith DH, Goldenberg DP and King J. (1984) Use of temperature sensitive mutants to dissect pathways of protein folding and subunit interaction. In:The Protein Folding Problem (ed. Donald B. Wetlaufer) AAAS Selected Symposium 89, pp 115-143. No abstract available.

Goldenberg DP, Smith DH and King J. (1983) Genetic analysis of the folding pathway for the tail spike protein of phage P22. Proc Natl Acad Sci U S A., 80(23), 7060-4.

Goldenberg DP, Smith DH and King J. (1983) Genetic and biochemical anaylsis of in vivo protein folding and subunit assembly. Biopolymers, 22, 125-129.

Goldenberg DP, Berget PB and King J. (1982) Maturation of the tail spike endorhamnosidase of Salmonella phage P22. J Biol Chem., 257(13), 7864-7871.

Goldenberg D and King J. (1982) Trimeric intermediate in the in vivo folding and subunit assembly of the tailspike endorhamnosidase of bacteriophage P22. Proc Natl Acad Sci U S A, 79(11), 3403-3407.

Smith DH and King J. (1981) Temperature-sensitive mutants blocked in the folding or subunit assembly of the bacteriophage P22 tailspike protein. III. Inactive polypeptide chains synthesized at 39 degrees. C. J Mol Biol., 145(4), 653-676.

Goldenberg DP and King J. (1981) Temperature-sensitive mutants blocked in the folding or subunit of the bacteriophage P22 tailspike protein. II. Active mutant proteins matured at 30° C. J. Mol Biol., 145(4), 633-651.

Smith DH, Berget PB and King J. (1980) Temperature-sensitive mutants blocked in the folding or subunit assembly of the bacteriophage P22 tail-spike protein. I. Fine-structure mapping. Genetics, 96(2), 331-352.


Computational Biology

Yang Z, Xia Z, Huynh T, King JA and Zhou R. (2013) Dissecting the contributions of b-hairpin tyrosine pairs to the folding and stability of long-lived human γD-crystallins. Nanoscale, doi:10.1039/c3nr03782g. (Royal Society of Chemistry)

Xia Z, Yang Z, Huynh T, King JA and Zhou R. (2013) UV-radiation induced disruption of dry-cavities in Human γ-D-cyrstallin results in decreased stability and faster unfolding. Nature Scientific Reports, 3, article 1560. doi:10.1038/srep01560

Das, P., King, J.A. and Zhou, R. (2011) Aggregation of γ-crystallins associated with human cataracts via domain swapping at the C-terminal β-strands. PNAS, 108, 10514-10519.

McDonnell AV, Menke M, Palmer N, King J, Cowen L and Berger B. (2006) Fold recognition and accurate sequence-structure alignment of sequences directing beta-sheet proteins. Proteins, 63, 976-985.

Schwartz R and King J. (2006) Frequencies of hydrophobic and hydrophilic runs and alternations in proteins of known structure. Protein Science, 15, 102-112.

Liu Y, Carbonell JG, Weigele PR and Gopalakrishnan V. (2005) Segmentation Conditional Random Fields (SCRFs): A New Approach for Protein Fold Recognition. RECOMB 2005, 408-422.

Menke M, King J, Berger B and Cowan L. (2005) Wrap and Pack: A new paradigm for beta structural motif recognition with application to recognizing beta trefoils. J. of Computational Biology, 12: 777-795.

Menke M, Scanlon E, King J, Berger B and Cowen L. (2004) Wrap and Pack: A New Paradigm for Beta Structural Motif Recognition with Application to Recognizing Beta Trefoils. In Proceedings of the 8th Annual International Conference on Research in Computational Molecular Biology RECOMB, (P.E. Bourne and D. Gusfield, eds.). ACM Press, New York, pp. 298-307.

Cowen L, Bradley P, Menke M, King J and Berger B. (2002) Predicting the Beta-helix fold from protein sequence data. J. Comp. Biol., 9, 261-276.

BetaWrap: Successful prediction of parallel ß-helices from primary sequence reveals an association with many microbial pathogens. Bradley, P., Cowen, L., Menke, M., King, J. and Berger, B. (2001) PNAS, 98, 14819-14824.

Bradley P, Cowen LJ, Menke M, King J and Berger B. (2001) Predicting the Beta-Helix Fold from Protein Sequence Data. In Proceedings of the Fifth Annual International Conference on Computational Molecular Biology, ACM Press, New York, pp. 59-67.

Schwartz R, Istrail S and King J. (2001) Frequencies of amino acid strings in globular protien sequences indicate suppression of blocks of consecutive hydrophobic residues. Protein Science, 10, 1023-1031.

Schwartz R, Ting C and King J. (2001) Whole proteome pI values correlate with subcellular localizations of proteins for organisms within the three domains of life. Genome Research, 11, 703-709.

Berger B, King J,Schwartz RS and Shor PW. (2000) Local Rule Mechanism for Selecting Icosahedral Shell Geometry. Discrete Applied Mathematics, 105, 55-69.

Istrail S, Schwartz R and King J. (1999) Lattice simulations of aggregation funnels for protein folding. J. of Computational Biology, 6, 143-162.

Chen C-C, King J and Wang D. (1995) A molecular thermodynamic model for helix-helix docking and protein aggregation. AIChE Journal, 41, 1015-1024.

Berger B, Shor PW, Tucker-Kellogg L and King J. (1994) A local rule based theory of virus shell assembly. Proceedings of the National Academy of Sciences, 91, 7732-7736.

Chen C-C, Zhu Y, King J and Evans L. (1992)A molecular thermodynamic approach to predict the secondary structure of homo-polypeptides in aqueous systems. Biopolymers, 32, 1375-1392.

Zhu Y, Chen C-C, King J and Evans L. (1992) Molecular thermodynamic model to predict the alpha-helical secondary structure of polypeptide chains in solution. Biochemistry, 31, 10591-10601.


Marine Phage

Dai W, Schmid MF, King JA and Chiu W. (2014) Identifying the assembly pathway of cyanophage inside the marine bacterium using electron cryo-tomography. Microb Cell, 1(1): 45-47.

Gipson P, Baker ML, Raytcheva D, Haase-Pettingell C, Piret J, King JA and Chiu W. (2014) Protruding knob-like proteins violate local symmetries in an icosahedral marine virus. Nature Communications, 5:4278. doi:10.1038/ncomms5278

Raytcheva DA, Haase-Pettingell C, Piret J, King JA. (2014) Two Novel Proteins of Cyanophage Syn5 Compose Its Unusual Horn Structure. J Virol., 88, 2047-2055.

Dai W, Fu C, Raytcheva D, Flanagan J, Khant HA, Liu X, Rochat RH, Caase-Pettingell C, Piret J, Ludtke SJ, Nagayama K, Schmid MF, King JA and Chiu W. (2013) Visualizing virus assembly intermediates inside marine cyanobacteria. Nature, 502, 707-710.

Zhu B, Tabor S, Raytcheva DA, Hernandez A, King JA and Richardson CC. (2013) The RNA polymerase of marine cyanophage Syn5. J.Bio.Chem., 288(5):3545-3552. doi:10.1074/jbc.M112.442350

Raytcheva, D.A., Haase-Pettingell, C., Piret, J.M. and King, J. (2011) Intracellular assembly of Cyanophage Syn5 proceeds through a scaffold-containing procapsid. J. Virology, 85, 2406-2415.

Weigele PR, Pedulla ML, Houtz JM, Smith AL, Conway JF, King J, Hatfull GF, Lawrence JG and Hendrix RW. (2007) Genomic and structural analysis of Syn9, a cyanophage infecting marine Prochlorococcus and Synechococcus. Environ. Microbiol., 9, 1675-1695.

Pope WH, Weigele PR, Chang J, Pedulla ML, Ford ME, Houtz JM, Jiang W, Chiu W, Hatfull GF, Hendrix RW and King J. (2007) Genome sequence, structural proteins and capsid organization of the Cyanophage Syn5: A "Horned" bacteriophage of marine Synechococcus. J. Mol. Biol., 368, 966-981.

Ting C, Rocap G, King J and Chisholm SW. (2002) Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. Trends in Microbiology, 10, 134-142. [link is to PDF file.]

Ting CS, Rocap G, King J and Chisholm SW. (2001) Phycobiliprotein genes of the marine photosynthetic prokaryote Prochlorococcus: Evidence for rapid evolution of genetic heterogeneity. Microbiology, 147, 3171-3182.

Ting C, Rocap G, King J and Chisholm SW. (1999) Characterization of phycoerythrin genes in the chlorophyll a2/b2-containing prokaryote, Prochlorococcus sp. MIT9303. In: Photosynthesis: Mechanisms and Effects (G. Garab, ed.) Vol. I, Kluwer Academic Publishers, The Netherlands, pp. 225-228. No abstract available.

Cameron RE, King J and David CN. (1970) Soil microbial ecology of Wheeler Valley, Antarctica. Soil Science, 109, 110-120. No abstract available.

Cameron RE, King J and David CN. (1970) Microbiology, Ecology and microclimatology of soil sites in dry valleys of Southern Victoria Land, Antarctica. Antarctica Ecology, 2, 702-716. No abstract available.

Cameron R, King J and David C. (1968) Soil microbial and ecological studies in Southern Victoria Land. Antarctic J., July-August, 121-123. No abstract available.

Cameron R, David C and King J. (1968) Soil toxicity in Antarctic dry valleys. Antarctic J., Sept-Oct, 164-166. No abstract available.

David C and King J. (1968) Searching for life in Antarctica. Engineering and Science, June, 14-18. No abstract available.


Science Education; Biomedical Research Policy & Ethics

King JA, Perry R and Salvucci FP. (2014) Commercial Intrusion into Academic Space. Academe, 100(6): 18-22.

King J and Decatur S. (2008) Commentary: An Education on Higher Education for the Next President. Chronicle of Higher Education, 55/3, pg. A38 (Sept. 12, 2008)

King,J. (2007) The High Stakes in Science Education: Risking the Roots of American Productivity. Education Week, 26, pg. 34, 44.

King J. (2000) Environmental pollution and the emergence of new diseases. In, Environmental Evolution, 2nd Edition (ed. L. Margulis, C. Matthews & A. Haselton), MIT Press, pp 249-262. No abstract available.

King J and Stabinsky D. (1999) Biotechnology under globalisation: the corporate expropriation of plant, animal and microbial species. Race & Class, 40, 73-89. No abstract available.

King J and Stabinsky D. (1999) Patents on cells, genes, and organisms undermine the exchange of scientific ideas. The Chronicle of Higher Ed., Opinion & Arts, Feb. 5, 1999, pp. B6-B8. No abstract available.

King J. (1999) The scientific endeavor is based on vigilance, not trust (commentary on Grinell). Science & Eng. Ethics, 5, 215-217. No absract available.

King J. (1998) Public resources, not corporate property. The Environmental Forum, 14, 40-41. No abstract available.

King, J. (1997) The Biotechnology Revolution: Self-replicating Factories and the Ownership of Life Forms. In Cutting Edge: Technology, Information Capitalism and Social Revolution (J. Davis, T. Hirschl and M. Stack, eds.) Verso Press, pp 145-156. No abstract available.

King J. (1995) "The end of work" and "The future before us." In: Job?Tech: The tecnological revolution and its impact on society. (Alkalimat, A., Gills, D. and Williams, K., eds.) Twenty-First Century Books and Publications, Chicago, IL, pp.22-26 and 52-58. No abstract available.

King J. (1985) The treat and fallacy of a biological arms race. Genewatch May-Aug; 2(2): 13-16. No abstract available.

King J. (1982) Patenting modified life forms: The case against. Environment, 24, 38-41 & 57-58. No abstract available.

King J. (1982) Science has always threatened values. U.S. News & World Report, July 5, 48-49. No abstract available.

King J. (1981) Arguments against patenting modified life forms. In: Patentability of Microorganisms: Issues and Questions. (R.F. Acker & M. Schaechter, eds) ASM, Washington, DC, pp. 36-41. No abstract available.

King J and Orrego C. Biotechnology. In: McGraw-Hill Yearbook of Science and Technology 1980 Review/1981 Preview. No abstract available.

New diseases in new niches. J. King (1978) Nature, 276, 4-7. No abstract available. PDF at http://www.nature.com/nature/journal/v276/n5683/pdf/276004a0.pdf

King J. (1978) Recombinant DNA and Autoimmune Disease. J. Infectious Diseases, 137, 663 666. No abstract available.

King J, Beckwith J and Miller L. (1976) Genetic Screening...Pitfalls. The Science Teacher, Vol 43. No abstract available.

Beckwith J and King J. (1974) The XYY syndrome: a dangerous myth. New Scientist, 474-476.


small P22 phage link to home The Jonathan King Lab Homepage