Controlling How Tests Are Run
Just as cargo run
compiles your code and then runs the resulting binary,
cargo test
compiles your code in test mode and runs the resulting test
binary. You can specify command line options to change the default behavior of
cargo test
. For example, the default behavior of the binary produced by
cargo test
is to run all the tests in parallel and capture output generated
during test runs, preventing the output from being displayed and making it
easier to read the output related to the test results.
Some command line options go to cargo test
and some go to the resulting test
binary. To separate these two types of arguments, you list the arguments that
go to cargo test
followed by the separator --
and then the arguments that
go to the test binary. Running cargo test --help
displays the options you can
use with cargo test
, and running cargo test -- --help
displays the options
you can use after the separator --
.
Running Tests in Parallel or Consecutively
When you run multiple tests, by default they run in parallel using threads. This means the tests will finish running faster so you can get feedback quicker on whether or not your code is working. Because the tests are running at the same time, make sure your tests don’t depend on each other or on any shared state, including a shared environment, such as the current working directory or environment variables.
For example, say each of your tests runs some code that creates a file on disk named test-output.txt and writes some data to that file. Then each test reads the data in that file and asserts that the file contains a particular value, which is different in each test. Because the tests run at the same time, one test might overwrite the file between when another test writes and reads the file. The second test will then fail, not because the code is incorrect, but because the tests have interfered with each other while running in parallel. One solution is to make sure each test writes to a different file; another solution is to run the tests one at a time.
If you don’t want to run the tests in parallel or if you want more fine-grained
control over the number of threads used, you can send the --test-threads
flag
and the number of threads you want to use to the test binary. Take a look at
the following example:
$ cargo test -- --test-threads=1
We set the number of test threads to 1
, telling the program not to use any
parallelism. Running the tests using one thread will take longer than running
them in parallel, but the tests won’t interfere with each other if they share
state.
Showing Function Output
By default, if a test passes, Rust’s test library captures anything printed to
standard output. For example, if we call println!
in a test and the test
passes, we won’t see the println!
output in the terminal: we’ll only see the
line that indicates the test passed. If a test fails, we’ll see whatever was
printed to standard output with the rest of the failure message.
As an example, Listing 11-10 has a silly function that prints the value of its parameter and returns 10, as well as a test that passes and a test that fails.
Filename: src/lib.rs
# #![allow(unused_variables)] #fn main() { fn prints_and_returns_10(a: i32) -> i32 { println!("I got the value {}", a); 10 } #[cfg(test)] mod tests { use super::*; #[test] fn this_test_will_pass() { let value = prints_and_returns_10(4); assert_eq!(10, value); } #[test] fn this_test_will_fail() { let value = prints_and_returns_10(8); assert_eq!(5, value); } } #}
When we run these tests with cargo test
, we’ll see the following output:
running 2 tests
test tests::this_test_will_pass ... ok
test tests::this_test_will_fail ... FAILED
failures:
---- tests::this_test_will_fail stdout ----
I got the value 8
thread 'tests::this_test_will_fail' panicked at 'assertion failed: `(left == right)`
left: `5`,
right: `10`', src/lib.rs:19:8
note: Run with `RUST_BACKTRACE=1` for a backtrace.
failures:
tests::this_test_will_fail
test result: FAILED. 1 passed; 1 failed; 0 ignored; 0 measured; 0 filtered out
Note that nowhere in this output do we see I got the value 4
, which is what
is printed when the test that passes runs. That output has been captured. The
output from the test that failed, I got the value 8
, appears in the section
of the test summary output, which also shows the cause of the test failure.
If we want to see printed values for passing tests as well, we can disable the
output capture behavior by using the --nocapture
flag:
$ cargo test -- --nocapture
When we run the tests in Listing 11-10 again with the --nocapture
flag, we
see the following output:
running 2 tests
I got the value 4
I got the value 8
test tests::this_test_will_pass ... ok
thread 'tests::this_test_will_fail' panicked at 'assertion failed: `(left == right)`
left: `5`,
right: `10`', src/lib.rs:19:8
note: Run with `RUST_BACKTRACE=1` for a backtrace.
test tests::this_test_will_fail ... FAILED
failures:
failures:
tests::this_test_will_fail
test result: FAILED. 1 passed; 1 failed; 0 ignored; 0 measured; 0 filtered out
Note that the output for the tests and the test results are interleaved; the
reason is that the tests are running in parallel, as we talked about in the
previous section. Try using the --test-threads=1
option and the --nocapture
flag, and see what the output looks like then!
Running a Subset of Tests by Name
Sometimes, running a full test suite can take a long time. If you’re working on
code in a particular area, you might want to run only the tests pertaining to
that code. You can choose which tests to run by passing cargo test
the name
or names of the test(s) you want to run as an argument.
To demonstrate how to run a subset of tests, we’ll create three tests for our
add_two
function, as shown in Listing 11-11, and choose which ones to run:
Filename: src/lib.rs
# #![allow(unused_variables)] #fn main() { pub fn add_two(a: i32) -> i32 { a + 2 } #[cfg(test)] mod tests { use super::*; #[test] fn add_two_and_two() { assert_eq!(4, add_two(2)); } #[test] fn add_three_and_two() { assert_eq!(5, add_two(3)); } #[test] fn one_hundred() { assert_eq!(102, add_two(100)); } } #}
If we run the tests without passing any arguments, as we saw earlier, all the tests will run in parallel:
running 3 tests
test tests::add_two_and_two ... ok
test tests::add_three_and_two ... ok
test tests::one_hundred ... ok
test result: ok. 3 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out
Running Single Tests
We can pass the name of any test function to cargo test
to run only that test:
$ cargo test one_hundred
Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs
Running target/debug/deps/adder-06a75b4a1f2515e9
running 1 test
test tests::one_hundred ... ok
test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 2 filtered out
Only the test with the name one_hundred
ran; the other two tests didn’t match
that name. The test output lets us know we had more tests than what this
command ran by displaying 2 filtered out
at the end of the summary line.
We can’t specify the names of multiple tests in this way; only the first value
given to cargo test
will be used. But there is a way to run multiple tests.
Filtering to Run Multiple Tests
We can specify part of a test name, and any test whose name matches that value
will be run. For example, because two of our tests’ names contain add
, we can
run those two by running cargo test add
:
$ cargo test add
Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs
Running target/debug/deps/adder-06a75b4a1f2515e9
running 2 tests
test tests::add_two_and_two ... ok
test tests::add_three_and_two ... ok
test result: ok. 2 passed; 0 failed; 0 ignored; 0 measured; 1 filtered out
This command ran all tests with add
in the name name and filtered out the
test named one_hundred
. Also note that the module in which tests appear
becomes part of the test’s name, so we can run all the tests in a module by
filtering on the module’s name.
Ignoring Some Tests Unless Specifically Requested
Sometimes a few specific tests can be very time-consuming to execute, so you
might want to exclude them during most runs of cargo test
. Rather than
listing as arguments all tests you do want to run, you can instead annotate the
time-consuming tests using the ignore
attribute to exclude them, as shown
here:
Filename: src/lib.rs
# #![allow(unused_variables)] #fn main() { #[test] fn it_works() { assert_eq!(2 + 2, 4); } #[test] #[ignore] fn expensive_test() { // code that takes an hour to run } #}
After #[test]
we add the #[ignore]
line to the test we want to exclude. Now
when we run our tests, it_works
runs, but expensive_test
doesn’t:
$ cargo test
Compiling adder v0.1.0 (file:///projects/adder)
Finished dev [unoptimized + debuginfo] target(s) in 0.24 secs
Running target/debug/deps/adder-ce99bcc2479f4607
running 2 tests
test expensive_test ... ignored
test it_works ... ok
test result: ok. 1 passed; 0 failed; 1 ignored; 0 measured; 0 filtered out
The expensive_test
function is listed as ignored
. If we want to run only
the ignored tests, we can use cargo test -- --ignored
:
$ cargo test -- --ignored
Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs
Running target/debug/deps/adder-ce99bcc2479f4607
running 1 test
test expensive_test ... ok
test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 1 filtered out
By controlling which tests run, you can make sure your cargo test
results
will be fast. When you’re at a point where it makes sense to check the results
of the ignored
tests and you have time to wait for the results, you can run
cargo test -- --ignored
instead.