All the Places Patterns Can Be Used
Patterns pop up in a number of places in Rust, and you’ve been using them a lot without realizing it! This section provides you with a reference to all the places where patterns are valid.
match
Arms
As discussed in Chapter 6, we use patterns in the arms of match
expressions.
Formally, match
expressions are defined as the keyword match
, a value to
match on, and one or more match arms that consist of a pattern and an
expression to run if the value matches that arm’s pattern, like this:
match VALUE {
PATTERN => EXPRESSION,
PATTERN => EXPRESSION,
PATTERN => EXPRESSION,
}
One requirement for match
expressions is that they need to be exhaustive in
the sense that all possibilities for the value in the match
expression must
be accounted for. One way to ensure you’ve covered every possibility is to have
a catchall pattern for the last arm: for example, a variable name matching any
value can never fail and thus covers every remaining case.
A particular pattern _
will match anything, but it never binds to a variable,
so it’s often used in the last match arm. The _
pattern can be useful when
you want to ignore any value not specified, for example. We’ll cover the _
pattern in more detail in the “Ignoring Values in a Pattern” section later in
this chapter.
Conditional if let
Expressions
In Chapter 6 we discussed how to use if let
expressions mainly as a shorter
way to write the equivalent of a match
that only matches one case.
Optionally, if let
can have a corresponding else
containing code to run if
the pattern in the if let
doesn’t match.
Listing 18-1 shows that it’s also possible to mix and match if let
, else if
, and else if let
expressions. Doing so gives us more flexibility than a
match
expression in which we can only express one value to compare with the
patterns. Also, the conditions in a series of if let
, else if
, else if let
arms aren’t required to relate to each other.
The code in Listing 18-1 shows a series of checks for several different conditions that decide what the background color should be. For this example, we’ve created variables with hardcoded values that a real program might receive from user input.
If the user specifies a favorite color, that color is the background color. If today is Tuesday, the background color will be green. If the user specifies their age as a string and we can parse it as a number successfully, the color is either purple or orange depending on the value of the number. If none of these conditions apply, the background color will be blue:
Filename: src/main.rs
fn main() { let favorite_color: Option<&str> = None; let is_tuesday = false; let age: Result<u8, _> = "34".parse(); if let Some(color) = favorite_color { println!("Using your favorite color, {}, as the background", color); } else if is_tuesday { println!("Tuesday is green day!"); } else if let Ok(age) = age { if age > 30 { println!("Using purple as the background color"); } else { println!("Using orange as the background color"); } } else { println!("Using blue as the background color"); } }
This conditional structure lets us support complex requirements. With the
hardcoded values we have here, this example will print Using purple as the background color
.
You can see that if let
can also introduce shadowed variables in the same way
that match
arms can: the line if let Ok(age) = age
introduces a new
shadowed age
variable that contains the value inside the Ok
variant. This
means we need to place the if age > 30
condition within that block: we can’t
combine these two conditions into if let Ok(age) = age && age > 30
. The
shadowed age
we want to compare to 30 isn’t valid until the new scope starts
with the curly bracket.
The downside of using if let
expressions is that the compiler doesn’t check
exhaustiveness, whereas with match
expressions it does. If we omitted the
last else
block and therefore missed handling some cases, the compiler would
not alert us to the possible logic bug.
while let
Conditional Loops
Similar in construction to if let
, the while let
conditional loop allows a
while
loop to run for as long as a pattern continues to match. The example in
Listing 18-2 shows a while let
loop that uses a vector as a stack and prints
out the values in the vector in the opposite order in which they were pushed:
# #![allow(unused_variables)] #fn main() { let mut stack = Vec::new(); stack.push(1); stack.push(2); stack.push(3); while let Some(top) = stack.pop() { println!("{}", top); } #}
This example prints 3, 2, and then 1. The pop
method takes the last element
out of the vector and returns Some(value)
. If the vector is empty, pop
returns None
. The while
loop continues running the code in its block as
long as pop
returns Some
. When pop
returns None
, the loop stops. We can
use while let
to pop every element off our stack.
for
Loops
In Chapter 3 we mentioned that the for
loop is the most common loop
construction in Rust code, but we haven’t yet discussed the pattern that for
takes. In a for
loop, the pattern is the value that directly follows the
keyword for
, so in for x in y
the x
is the pattern.
Listing 18-3 demonstrates how to use a pattern in a for
loop to destructure,
or break apart, a tuple as part of the for
loop:
# #![allow(unused_variables)] #fn main() { let v = vec!['a', 'b', 'c']; for (index, value) in v.iter().enumerate() { println!("{} is at index {}", value, index); } #}
The code in Listing 18-3 will print the following:
a is at index 0
b is at index 1
c is at index 2
We use the enumerate
method to adapt an iterator to produce a value and that
value’s index in the iterator, placed into a tuple. The first call to
enumerate
produces the tuple (0, 'a')
. When this value is matched to the
pattern (index, value)
, index
will be 0
and value
will be 'a'
,
printing the first line of the output.
let
Statements
Prior to this chapter, we had only explicitly discussed using patterns with
match
and if let
, but in fact, we’ve used patterns in other places as well,
including in let
statements. For example, consider this straightforward
variable assignment with let
:
# #![allow(unused_variables)] #fn main() { let x = 5; #}
Throughout this book, we’ve used let
like this hundreds of times, and
although you might not have realized it, you were using patterns! More
formally, a let
statement looks like this:
let PATTERN = EXPRESSION;
In statements like let x = 5;
with a variable name in the PATTERN
slot, the
variable name is just a particularly simple form of a pattern. Rust compares
the expression against the pattern and assigns any names it finds. So in the
let x = 5;
example, x
is a pattern that means “bind what matches here to
the variable x
.” Because the name x
is the whole pattern, this pattern
effectively means “bind everything to the variable x
, whatever the value is.”
To see the pattern matching aspect of let
more clearly, consider Listing
18-4, which uses a pattern with let
to destructure a tuple:
# #![allow(unused_variables)] #fn main() { let (x, y, z) = (1, 2, 3); #}
Here, we match a tuple against a pattern. Rust compares the value (1, 2, 3)
to the pattern (x, y, z)
and sees that the value matches the pattern, so Rust
binds 1
to x
, 2
to y
, and 3
to z
. You can think of this tuple
pattern as nesting three individual variable patterns inside it.
If the number of elements in the pattern doesn’t match the number of elements in the tuple, the overall type won’t match and we’ll get a compiler error. For example, Listing 18-5 shows an attempt to destructure a tuple with three elements into two variables, which won’t work:
let (x, y) = (1, 2, 3);
Attempting to compile this code results in this type error:
error[E0308]: mismatched types
--> src/main.rs:2:9
|
2 | let (x, y) = (1, 2, 3);
| ^^^^^^ expected a tuple with 3 elements, found one with 2 elements
|
= note: expected type `({integer}, {integer}, {integer})`
found type `(_, _)`
If we wanted to ignore one or more of the values in the tuple, we could use _
or ..
as you’ll see in the “Ignoring Values in a Pattern” section. If the
problem is that we have too many variables in the pattern, the solution is to
make the types match by removing variables so the number of variables equals
the number of elements in the tuple.
Function Parameters
Function parameters can also be patterns. The code in Listing 18-6, which
declares a function named foo
that takes one parameter named x
of type
i32
, should by now look familiar:
# #![allow(unused_variables)] #fn main() { fn foo(x: i32) { // code goes here } #}
The x
part is a pattern! As we did with let
, we could match a tuple in a
function’s arguments to the pattern. Listing 18-7 splits the values in a tuple
as we pass it to a function:
Filename: src/main.rs
fn print_coordinates(&(x, y): &(i32, i32)) { println!("Current location: ({}, {})", x, y); } fn main() { let point = (3, 5); print_coordinates(&point); }
This code prints Current location: (3, 5)
. The values &(3, 5)
match the
pattern &(x, y)
, so x
is the value 3
and y
is the value 5
.
We can also use patterns in closure parameter lists in the same way as in function parameter lists, because closures are similar to functions, as discussed in Chapter 13.
At this point, you’ve seen several ways of using patterns, but patterns don’t work the same in every place we can use them. In some places, the patterns must be irrefutable, meaning they must match any value provided. In other circumstances, they can be refutable. Let’s discuss these two concepts next.