Primitive Type f321.0.0 [−]
The 32-bit floating point type.
Methods
impl f32
[src]
impl f32
pub fn is_nan(self) -> bool
[src]
pub fn is_nan(self) -> bool
Returns true
if this value is NaN
and false otherwise.
use std::f32; let nan = f32::NAN; let f = 7.0_f32; assert!(nan.is_nan()); assert!(!f.is_nan());Run
pub fn is_infinite(self) -> bool
[src]
pub fn is_infinite(self) -> bool
Returns true
if this value is positive infinity or negative infinity and
false otherwise.
use std::f32; let f = 7.0f32; let inf = f32::INFINITY; let neg_inf = f32::NEG_INFINITY; let nan = f32::NAN; assert!(!f.is_infinite()); assert!(!nan.is_infinite()); assert!(inf.is_infinite()); assert!(neg_inf.is_infinite());Run
pub fn is_finite(self) -> bool
[src]
pub fn is_finite(self) -> bool
Returns true
if this number is neither infinite nor NaN
.
use std::f32; let f = 7.0f32; let inf = f32::INFINITY; let neg_inf = f32::NEG_INFINITY; let nan = f32::NAN; assert!(f.is_finite()); assert!(!nan.is_finite()); assert!(!inf.is_finite()); assert!(!neg_inf.is_finite());Run
pub fn is_normal(self) -> bool
[src]
pub fn is_normal(self) -> bool
Returns true
if the number is neither zero, infinite,
subnormal, or NaN
.
use std::f32; let min = f32::MIN_POSITIVE; // 1.17549435e-38f32 let max = f32::MAX; let lower_than_min = 1.0e-40_f32; let zero = 0.0_f32; assert!(min.is_normal()); assert!(max.is_normal()); assert!(!zero.is_normal()); assert!(!f32::NAN.is_normal()); assert!(!f32::INFINITY.is_normal()); // Values between `0` and `min` are Subnormal. assert!(!lower_than_min.is_normal());Run
pub fn classify(self) -> FpCategory
[src]
pub fn classify(self) -> FpCategory
Returns the floating point category of the number. If only one property is going to be tested, it is generally faster to use the specific predicate instead.
use std::num::FpCategory; use std::f32; let num = 12.4_f32; let inf = f32::INFINITY; assert_eq!(num.classify(), FpCategory::Normal); assert_eq!(inf.classify(), FpCategory::Infinite);Run
pub fn floor(self) -> f32
[src]
pub fn floor(self) -> f32
Returns the largest integer less than or equal to a number.
let f = 3.99_f32; let g = 3.0_f32; assert_eq!(f.floor(), 3.0); assert_eq!(g.floor(), 3.0);Run
pub fn ceil(self) -> f32
[src]
pub fn ceil(self) -> f32
Returns the smallest integer greater than or equal to a number.
let f = 3.01_f32; let g = 4.0_f32; assert_eq!(f.ceil(), 4.0); assert_eq!(g.ceil(), 4.0);Run
pub fn round(self) -> f32
[src]
pub fn round(self) -> f32
Returns the nearest integer to a number. Round half-way cases away from
0.0
.
let f = 3.3_f32; let g = -3.3_f32; assert_eq!(f.round(), 3.0); assert_eq!(g.round(), -3.0);Run
pub fn trunc(self) -> f32
[src]
pub fn trunc(self) -> f32
Returns the integer part of a number.
let f = 3.3_f32; let g = -3.7_f32; assert_eq!(f.trunc(), 3.0); assert_eq!(g.trunc(), -3.0);Run
pub fn fract(self) -> f32
[src]
pub fn fract(self) -> f32
Returns the fractional part of a number.
use std::f32; let x = 3.5_f32; let y = -3.5_f32; let abs_difference_x = (x.fract() - 0.5).abs(); let abs_difference_y = (y.fract() - (-0.5)).abs(); assert!(abs_difference_x <= f32::EPSILON); assert!(abs_difference_y <= f32::EPSILON);Run
pub fn abs(self) -> f32
[src]
pub fn abs(self) -> f32
Computes the absolute value of self
. Returns NAN
if the
number is NAN
.
use std::f32; let x = 3.5_f32; let y = -3.5_f32; let abs_difference_x = (x.abs() - x).abs(); let abs_difference_y = (y.abs() - (-y)).abs(); assert!(abs_difference_x <= f32::EPSILON); assert!(abs_difference_y <= f32::EPSILON); assert!(f32::NAN.abs().is_nan());Run
pub fn signum(self) -> f32
[src]
pub fn signum(self) -> f32
Returns a number that represents the sign of self
.
1.0
if the number is positive,+0.0
orINFINITY
-1.0
if the number is negative,-0.0
orNEG_INFINITY
NAN
if the number isNAN
use std::f32; let f = 3.5_f32; assert_eq!(f.signum(), 1.0); assert_eq!(f32::NEG_INFINITY.signum(), -1.0); assert!(f32::NAN.signum().is_nan());Run
pub fn is_sign_positive(self) -> bool
[src]
pub fn is_sign_positive(self) -> bool
Returns true
if and only if self
has a positive sign, including +0.0
, NaN
s with
positive sign bit and positive infinity.
let f = 7.0_f32; let g = -7.0_f32; assert!(f.is_sign_positive()); assert!(!g.is_sign_positive());Run
pub fn is_sign_negative(self) -> bool
[src]
pub fn is_sign_negative(self) -> bool
Returns true
if and only if self
has a negative sign, including -0.0
, NaN
s with
negative sign bit and negative infinity.
let f = 7.0f32; let g = -7.0f32; assert!(!f.is_sign_negative()); assert!(g.is_sign_negative());Run
pub fn mul_add(self, a: f32, b: f32) -> f32
[src]
pub fn mul_add(self, a: f32, b: f32) -> f32
Fused multiply-add. Computes (self * a) + b
with only one rounding
error. This produces a more accurate result with better performance than
a separate multiplication operation followed by an add.
use std::f32; let m = 10.0_f32; let x = 4.0_f32; let b = 60.0_f32; // 100.0 let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn recip(self) -> f32
[src]
pub fn recip(self) -> f32
Takes the reciprocal (inverse) of a number, 1/x
.
use std::f32; let x = 2.0_f32; let abs_difference = (x.recip() - (1.0/x)).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn powi(self, n: i32) -> f32
[src]
pub fn powi(self, n: i32) -> f32
Raises a number to an integer power.
Using this function is generally faster than using powf
use std::f32; let x = 2.0_f32; let abs_difference = (x.powi(2) - x*x).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn powf(self, n: f32) -> f32
[src]
pub fn powf(self, n: f32) -> f32
Raises a number to a floating point power.
use std::f32; let x = 2.0_f32; let abs_difference = (x.powf(2.0) - x*x).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn sqrt(self) -> f32
[src]
pub fn sqrt(self) -> f32
Takes the square root of a number.
Returns NaN if self
is a negative number.
use std::f32; let positive = 4.0_f32; let negative = -4.0_f32; let abs_difference = (positive.sqrt() - 2.0).abs(); assert!(abs_difference <= f32::EPSILON); assert!(negative.sqrt().is_nan());Run
pub fn exp(self) -> f32
[src]
pub fn exp(self) -> f32
Returns e^(self)
, (the exponential function).
use std::f32; let one = 1.0f32; // e^1 let e = one.exp(); // ln(e) - 1 == 0 let abs_difference = (e.ln() - 1.0).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn exp2(self) -> f32
[src]
pub fn exp2(self) -> f32
Returns 2^(self)
.
use std::f32; let f = 2.0f32; // 2^2 - 4 == 0 let abs_difference = (f.exp2() - 4.0).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn ln(self) -> f32
[src]
pub fn ln(self) -> f32
Returns the natural logarithm of the number.
use std::f32; let one = 1.0f32; // e^1 let e = one.exp(); // ln(e) - 1 == 0 let abs_difference = (e.ln() - 1.0).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn log(self, base: f32) -> f32
[src]
pub fn log(self, base: f32) -> f32
Returns the logarithm of the number with respect to an arbitrary base.
The result may not be correctly rounded owing to implementation details;
self.log2()
can produce more accurate results for base 2, and
self.log10()
can produce more accurate results for base 10.
use std::f32; let five = 5.0f32; // log5(5) - 1 == 0 let abs_difference = (five.log(5.0) - 1.0).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn log2(self) -> f32
[src]
pub fn log2(self) -> f32
Returns the base 2 logarithm of the number.
use std::f32; let two = 2.0f32; // log2(2) - 1 == 0 let abs_difference = (two.log2() - 1.0).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn log10(self) -> f32
[src]
pub fn log10(self) -> f32
Returns the base 10 logarithm of the number.
use std::f32; let ten = 10.0f32; // log10(10) - 1 == 0 let abs_difference = (ten.log10() - 1.0).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn to_degrees(self) -> f32
1.7.0[src]
pub fn to_degrees(self) -> f32
Converts radians to degrees.
use std::f32::{self, consts}; let angle = consts::PI; let abs_difference = (angle.to_degrees() - 180.0).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn to_radians(self) -> f32
1.7.0[src]
pub fn to_radians(self) -> f32
Converts degrees to radians.
use std::f32::{self, consts}; let angle = 180.0f32; let abs_difference = (angle.to_radians() - consts::PI).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn max(self, other: f32) -> f32
[src]
pub fn max(self, other: f32) -> f32
Returns the maximum of the two numbers.
let x = 1.0f32; let y = 2.0f32; assert_eq!(x.max(y), y);Run
If one of the arguments is NaN, then the other argument is returned.
pub fn min(self, other: f32) -> f32
[src]
pub fn min(self, other: f32) -> f32
Returns the minimum of the two numbers.
let x = 1.0f32; let y = 2.0f32; assert_eq!(x.min(y), x);Run
If one of the arguments is NaN, then the other argument is returned.
pub fn abs_sub(self, other: f32) -> f32
[src]
pub fn abs_sub(self, other: f32) -> f32
: you probably meant (self - other).abs()
: this operation is (self - other).max(0.0)
(also known as fdimf
in C). If you truly need the positive difference, consider using that expression or the C function fdimf
, depending on how you wish to handle NaN (please consider filing an issue describing your use-case too).
The positive difference of two numbers.
- If
self <= other
:0:0
- Else:
self - other
use std::f32; let x = 3.0f32; let y = -3.0f32; let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs(); let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs(); assert!(abs_difference_x <= f32::EPSILON); assert!(abs_difference_y <= f32::EPSILON);Run
pub fn cbrt(self) -> f32
[src]
pub fn cbrt(self) -> f32
Takes the cubic root of a number.
use std::f32; let x = 8.0f32; // x^(1/3) - 2 == 0 let abs_difference = (x.cbrt() - 2.0).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn hypot(self, other: f32) -> f32
[src]
pub fn hypot(self, other: f32) -> f32
Calculates the length of the hypotenuse of a right-angle triangle given
legs of length x
and y
.
use std::f32; let x = 2.0f32; let y = 3.0f32; // sqrt(x^2 + y^2) let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn sin(self) -> f32
[src]
pub fn sin(self) -> f32
Computes the sine of a number (in radians).
use std::f32; let x = f32::consts::PI/2.0; let abs_difference = (x.sin() - 1.0).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn cos(self) -> f32
[src]
pub fn cos(self) -> f32
Computes the cosine of a number (in radians).
use std::f32; let x = 2.0*f32::consts::PI; let abs_difference = (x.cos() - 1.0).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn tan(self) -> f32
[src]
pub fn tan(self) -> f32
Computes the tangent of a number (in radians).
use std::f32; let x = f32::consts::PI / 4.0; let abs_difference = (x.tan() - 1.0).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn asin(self) -> f32
[src]
pub fn asin(self) -> f32
Computes the arcsine of a number. Return value is in radians in the range [-pi/2, pi/2] or NaN if the number is outside the range [-1, 1].
use std::f32; let f = f32::consts::PI / 2.0; // asin(sin(pi/2)) let abs_difference = (f.sin().asin() - f32::consts::PI / 2.0).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn acos(self) -> f32
[src]
pub fn acos(self) -> f32
Computes the arccosine of a number. Return value is in radians in the range [0, pi] or NaN if the number is outside the range [-1, 1].
use std::f32; let f = f32::consts::PI / 4.0; // acos(cos(pi/4)) let abs_difference = (f.cos().acos() - f32::consts::PI / 4.0).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn atan(self) -> f32
[src]
pub fn atan(self) -> f32
Computes the arctangent of a number. Return value is in radians in the range [-pi/2, pi/2];
use std::f32; let f = 1.0f32; // atan(tan(1)) let abs_difference = (f.tan().atan() - 1.0).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn atan2(self, other: f32) -> f32
[src]
pub fn atan2(self, other: f32) -> f32
Computes the four quadrant arctangent of self
(y
) and other
(x
) in radians.
x = 0
,y = 0
:0
x >= 0
:arctan(y/x)
->[-pi/2, pi/2]
y >= 0
:arctan(y/x) + pi
->(pi/2, pi]
y < 0
:arctan(y/x) - pi
->(-pi, -pi/2)
use std::f32; let pi = f32::consts::PI; // Positive angles measured counter-clockwise // from positive x axis // -pi/4 radians (45 deg clockwise) let x1 = 3.0f32; let y1 = -3.0f32; // 3pi/4 radians (135 deg counter-clockwise) let x2 = -3.0f32; let y2 = 3.0f32; let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs(); let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs(); assert!(abs_difference_1 <= f32::EPSILON); assert!(abs_difference_2 <= f32::EPSILON);Run
pub fn sin_cos(self) -> (f32, f32)
[src]
pub fn sin_cos(self) -> (f32, f32)
Simultaneously computes the sine and cosine of the number, x
. Returns
(sin(x), cos(x))
.
use std::f32; let x = f32::consts::PI/4.0; let f = x.sin_cos(); let abs_difference_0 = (f.0 - x.sin()).abs(); let abs_difference_1 = (f.1 - x.cos()).abs(); assert!(abs_difference_0 <= f32::EPSILON); assert!(abs_difference_1 <= f32::EPSILON);Run
pub fn exp_m1(self) -> f32
[src]
pub fn exp_m1(self) -> f32
Returns e^(self) - 1
in a way that is accurate even if the
number is close to zero.
use std::f32; let x = 6.0f32; // e^(ln(6)) - 1 let abs_difference = (x.ln().exp_m1() - 5.0).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn ln_1p(self) -> f32
[src]
pub fn ln_1p(self) -> f32
Returns ln(1+n)
(natural logarithm) more accurately than if
the operations were performed separately.
use std::f32; let x = f32::consts::E - 1.0; // ln(1 + (e - 1)) == ln(e) == 1 let abs_difference = (x.ln_1p() - 1.0).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn sinh(self) -> f32
[src]
pub fn sinh(self) -> f32
Hyperbolic sine function.
use std::f32; let e = f32::consts::E; let x = 1.0f32; let f = x.sinh(); // Solving sinh() at 1 gives `(e^2-1)/(2e)` let g = (e*e - 1.0)/(2.0*e); let abs_difference = (f - g).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn cosh(self) -> f32
[src]
pub fn cosh(self) -> f32
Hyperbolic cosine function.
use std::f32; let e = f32::consts::E; let x = 1.0f32; let f = x.cosh(); // Solving cosh() at 1 gives this result let g = (e*e + 1.0)/(2.0*e); let abs_difference = (f - g).abs(); // Same result assert!(abs_difference <= f32::EPSILON);Run
pub fn tanh(self) -> f32
[src]
pub fn tanh(self) -> f32
Hyperbolic tangent function.
use std::f32; let e = f32::consts::E; let x = 1.0f32; let f = x.tanh(); // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))` let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2)); let abs_difference = (f - g).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn asinh(self) -> f32
[src]
pub fn asinh(self) -> f32
Inverse hyperbolic sine function.
use std::f32; let x = 1.0f32; let f = x.sinh().asinh(); let abs_difference = (f - x).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn acosh(self) -> f32
[src]
pub fn acosh(self) -> f32
Inverse hyperbolic cosine function.
use std::f32; let x = 1.0f32; let f = x.cosh().acosh(); let abs_difference = (f - x).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn atanh(self) -> f32
[src]
pub fn atanh(self) -> f32
Inverse hyperbolic tangent function.
use std::f32; let e = f32::consts::E; let f = e.tanh().atanh(); let abs_difference = (f - e).abs(); assert!(abs_difference <= 1e-5);Run
pub fn to_bits(self) -> u32
1.20.0[src]
pub fn to_bits(self) -> u32
Raw transmutation to u32
.
This is currently identical to transmute::<f32, u32>(self)
on all platforms.
See from_bits
for some discussion of the portability of this operation
(there are almost no issues).
Note that this function is distinct from as
casting, which attempts to
preserve the numeric value, and not the bitwise value.
Examples
assert_ne!((1f32).to_bits(), 1f32 as u32); // to_bits() is not casting! assert_eq!((12.5f32).to_bits(), 0x41480000); Run
pub fn from_bits(v: u32) -> Self
1.20.0[src]
pub fn from_bits(v: u32) -> Self
Raw transmutation from u32
.
This is currently identical to transmute::<u32, f32>(v)
on all platforms.
It turns out this is incredibly portable, for two reasons:
- Floats and Ints have the same endianness on all supported platforms.
- IEEE-754 very precisely specifies the bit layout of floats.
However there is one caveat: prior to the 2008 version of IEEE-754, how to interpret the NaN signaling bit wasn't actually specified. Most platforms (notably x86 and ARM) picked the interpretation that was ultimately standardized in 2008, but some didn't (notably MIPS). As a result, all signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.
Rather than trying to preserve signaling-ness cross-platform, this implementation favours preserving the exact bits. This means that any payloads encoded in NaNs will be preserved even if the result of this method is sent over the network from an x86 machine to a MIPS one.
If the results of this method are only manipulated by the same architecture that produced them, then there is no portability concern.
If the input isn't NaN, then there is no portability concern.
If you don't care about signalingness (very likely), then there is no portability concern.
Note that this function is distinct from as
casting, which attempts to
preserve the numeric value, and not the bitwise value.
Examples
use std::f32; let v = f32::from_bits(0x41480000); let difference = (v - 12.5).abs(); assert!(difference <= 1e-5);Run
Trait Implementations
impl<'a> Div<&'a f32> for f32
[src]
impl<'a> Div<&'a f32> for f32
type Output = <f32 as Div<f32>>::Output
The resulting type after applying the /
operator.
fn div(self, other: &'a f32) -> <f32 as Div<f32>>::Output
[src]
fn div(self, other: &'a f32) -> <f32 as Div<f32>>::Output
Performs the /
operation.
impl Div<f32> for f32
[src]
impl Div<f32> for f32
type Output = f32
The resulting type after applying the /
operator.
fn div(self, other: f32) -> f32
[src]
fn div(self, other: f32) -> f32
Performs the /
operation.
impl<'a, 'b> Div<&'a f32> for &'b f32
[src]
impl<'a, 'b> Div<&'a f32> for &'b f32
type Output = <f32 as Div<f32>>::Output
The resulting type after applying the /
operator.
fn div(self, other: &'a f32) -> <f32 as Div<f32>>::Output
[src]
fn div(self, other: &'a f32) -> <f32 as Div<f32>>::Output
Performs the /
operation.
impl<'a> Div<f32> for &'a f32
[src]
impl<'a> Div<f32> for &'a f32
type Output = <f32 as Div<f32>>::Output
The resulting type after applying the /
operator.
fn div(self, other: f32) -> <f32 as Div<f32>>::Output
[src]
fn div(self, other: f32) -> <f32 as Div<f32>>::Output
Performs the /
operation.
impl Debug for f32
[src]
impl Debug for f32
fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>
[src]
fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>
Formats the value using the given formatter. Read more
impl<'a> Add<f32> for &'a f32
[src]
impl<'a> Add<f32> for &'a f32
type Output = <f32 as Add<f32>>::Output
The resulting type after applying the +
operator.
fn add(self, other: f32) -> <f32 as Add<f32>>::Output
[src]
fn add(self, other: f32) -> <f32 as Add<f32>>::Output
Performs the +
operation.
impl Add<f32> for f32
[src]
impl Add<f32> for f32
type Output = f32
The resulting type after applying the +
operator.
fn add(self, other: f32) -> f32
[src]
fn add(self, other: f32) -> f32
Performs the +
operation.
impl<'a> Add<&'a f32> for f32
[src]
impl<'a> Add<&'a f32> for f32
type Output = <f32 as Add<f32>>::Output
The resulting type after applying the +
operator.
fn add(self, other: &'a f32) -> <f32 as Add<f32>>::Output
[src]
fn add(self, other: &'a f32) -> <f32 as Add<f32>>::Output
Performs the +
operation.
impl<'a, 'b> Add<&'a f32> for &'b f32
[src]
impl<'a, 'b> Add<&'a f32> for &'b f32
type Output = <f32 as Add<f32>>::Output
The resulting type after applying the +
operator.
fn add(self, other: &'a f32) -> <f32 as Add<f32>>::Output
[src]
fn add(self, other: &'a f32) -> <f32 as Add<f32>>::Output
Performs the +
operation.
impl<'a> Sum<&'a f32> for f32
1.12.0[src]
impl<'a> Sum<&'a f32> for f32
fn sum<I>(iter: I) -> f32 where
I: Iterator<Item = &'a f32>,
[src]
fn sum<I>(iter: I) -> f32 where
I: Iterator<Item = &'a f32>,
Method which takes an iterator and generates Self
from the elements by "summing up" the items. Read more
impl Sum<f32> for f32
1.12.0[src]
impl Sum<f32> for f32
fn sum<I>(iter: I) -> f32 where
I: Iterator<Item = f32>,
[src]
fn sum<I>(iter: I) -> f32 where
I: Iterator<Item = f32>,
Method which takes an iterator and generates Self
from the elements by "summing up" the items. Read more
impl DivAssign<f32> for f32
1.8.0[src]
impl DivAssign<f32> for f32
fn div_assign(&mut self, other: f32)
[src]
fn div_assign(&mut self, other: f32)
Performs the /=
operation.
impl<'a> DivAssign<&'a f32> for f32
1.22.0[src]
impl<'a> DivAssign<&'a f32> for f32
fn div_assign(&mut self, other: &'a f32)
[src]
fn div_assign(&mut self, other: &'a f32)
Performs the /=
operation.
impl<'a> SubAssign<&'a f32> for f32
1.22.0[src]
impl<'a> SubAssign<&'a f32> for f32
fn sub_assign(&mut self, other: &'a f32)
[src]
fn sub_assign(&mut self, other: &'a f32)
Performs the -=
operation.
impl SubAssign<f32> for f32
1.8.0[src]
impl SubAssign<f32> for f32
fn sub_assign(&mut self, other: f32)
[src]
fn sub_assign(&mut self, other: f32)
Performs the -=
operation.
impl PartialEq<f32> for f32
[src]
impl PartialEq<f32> for f32
fn eq(&self, other: &f32) -> bool
[src]
fn eq(&self, other: &f32) -> bool
This method tests for self
and other
values to be equal, and is used by ==
. Read more
fn ne(&self, other: &f32) -> bool
[src]
fn ne(&self, other: &f32) -> bool
This method tests for !=
.
impl From<u16> for f32
1.6.0[src]
impl From<u16> for f32
impl From<u8> for f32
1.6.0[src]
impl From<u8> for f32
impl From<i8> for f32
1.6.0[src]
impl From<i8> for f32
impl From<i16> for f32
1.6.0[src]
impl From<i16> for f32
impl LowerExp for f32
[src]
impl LowerExp for f32
fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>
[src]
fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>
Formats the value using the given formatter.
impl FromStr for f32
[src]
impl FromStr for f32
type Err = ParseFloatError
The associated error which can be returned from parsing.
fn from_str(src: &str) -> Result<f32, ParseFloatError>
[src]
fn from_str(src: &str) -> Result<f32, ParseFloatError>
Converts a string in base 10 to a float. Accepts an optional decimal exponent.
This function accepts strings such as
- '3.14'
- '-3.14'
- '2.5E10', or equivalently, '2.5e10'
- '2.5E-10'
- '5.'
- '.5', or, equivalently, '0.5'
- 'inf', '-inf', 'NaN'
Leading and trailing whitespace represent an error.
Arguments
- src - A string
Return value
Err(ParseFloatError)
if the string did not represent a valid
number. Otherwise, Ok(n)
where n
is the floating-point
number represented by src
.
impl Display for f32
[src]
impl Display for f32
fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>
[src]
fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>
Formats the value using the given formatter. Read more
impl<'a> Mul<&'a f32> for f32
[src]
impl<'a> Mul<&'a f32> for f32
type Output = <f32 as Mul<f32>>::Output
The resulting type after applying the *
operator.
fn mul(self, other: &'a f32) -> <f32 as Mul<f32>>::Output
[src]
fn mul(self, other: &'a f32) -> <f32 as Mul<f32>>::Output
Performs the *
operation.
impl<'a, 'b> Mul<&'a f32> for &'b f32
[src]
impl<'a, 'b> Mul<&'a f32> for &'b f32
type Output = <f32 as Mul<f32>>::Output
The resulting type after applying the *
operator.
fn mul(self, other: &'a f32) -> <f32 as Mul<f32>>::Output
[src]
fn mul(self, other: &'a f32) -> <f32 as Mul<f32>>::Output
Performs the *
operation.
impl<'a> Mul<f32> for &'a f32
[src]
impl<'a> Mul<f32> for &'a f32
type Output = <f32 as Mul<f32>>::Output
The resulting type after applying the *
operator.
fn mul(self, other: f32) -> <f32 as Mul<f32>>::Output
[src]
fn mul(self, other: f32) -> <f32 as Mul<f32>>::Output
Performs the *
operation.
impl Mul<f32> for f32
[src]
impl Mul<f32> for f32
type Output = f32
The resulting type after applying the *
operator.
fn mul(self, other: f32) -> f32
[src]
fn mul(self, other: f32) -> f32
Performs the *
operation.
impl<'a> Product<&'a f32> for f32
1.12.0[src]
impl<'a> Product<&'a f32> for f32
fn product<I>(iter: I) -> f32 where
I: Iterator<Item = &'a f32>,
[src]
fn product<I>(iter: I) -> f32 where
I: Iterator<Item = &'a f32>,
Method which takes an iterator and generates Self
from the elements by multiplying the items. Read more
impl Product<f32> for f32
1.12.0[src]
impl Product<f32> for f32
fn product<I>(iter: I) -> f32 where
I: Iterator<Item = f32>,
[src]
fn product<I>(iter: I) -> f32 where
I: Iterator<Item = f32>,
Method which takes an iterator and generates Self
from the elements by multiplying the items. Read more
impl RemAssign<f32> for f32
1.8.0[src]
impl RemAssign<f32> for f32
fn rem_assign(&mut self, other: f32)
[src]
fn rem_assign(&mut self, other: f32)
Performs the %=
operation.
impl<'a> RemAssign<&'a f32> for f32
1.22.0[src]
impl<'a> RemAssign<&'a f32> for f32
fn rem_assign(&mut self, other: &'a f32)
[src]
fn rem_assign(&mut self, other: &'a f32)
Performs the %=
operation.
impl MulAssign<f32> for f32
1.8.0[src]
impl MulAssign<f32> for f32
fn mul_assign(&mut self, other: f32)
[src]
fn mul_assign(&mut self, other: f32)
Performs the *=
operation.
impl<'a> MulAssign<&'a f32> for f32
1.22.0[src]
impl<'a> MulAssign<&'a f32> for f32
fn mul_assign(&mut self, other: &'a f32)
[src]
fn mul_assign(&mut self, other: &'a f32)
Performs the *=
operation.
impl AddAssign<f32> for f32
1.8.0[src]
impl AddAssign<f32> for f32
fn add_assign(&mut self, other: f32)
[src]
fn add_assign(&mut self, other: f32)
Performs the +=
operation.
impl<'a> AddAssign<&'a f32> for f32
1.22.0[src]
impl<'a> AddAssign<&'a f32> for f32
fn add_assign(&mut self, other: &'a f32)
[src]
fn add_assign(&mut self, other: &'a f32)
Performs the +=
operation.
impl UpperExp for f32
[src]
impl UpperExp for f32
fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>
[src]
fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>
Formats the value using the given formatter.
impl<'a> Neg for &'a f32
[src]
impl<'a> Neg for &'a f32
type Output = <f32 as Neg>::Output
The resulting type after applying the -
operator.
fn neg(self) -> <f32 as Neg>::Output
[src]
fn neg(self) -> <f32 as Neg>::Output
Performs the unary -
operation.
impl Neg for f32
[src]
impl Neg for f32
type Output = f32
The resulting type after applying the -
operator.
fn neg(self) -> f32
[src]
fn neg(self) -> f32
Performs the unary -
operation.
impl Default for f32
[src]
impl Default for f32
impl PartialOrd<f32> for f32
[src]
impl PartialOrd<f32> for f32
fn partial_cmp(&self, other: &f32) -> Option<Ordering>
[src]
fn partial_cmp(&self, other: &f32) -> Option<Ordering>
This method returns an ordering between self
and other
values if one exists. Read more
fn lt(&self, other: &f32) -> bool
[src]
fn lt(&self, other: &f32) -> bool
This method tests less than (for self
and other
) and is used by the <
operator. Read more
fn le(&self, other: &f32) -> bool
[src]
fn le(&self, other: &f32) -> bool
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
fn ge(&self, other: &f32) -> bool
[src]
fn ge(&self, other: &f32) -> bool
This method tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
fn gt(&self, other: &f32) -> bool
[src]
fn gt(&self, other: &f32) -> bool
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
impl Sub<f32> for f32
[src]
impl Sub<f32> for f32
type Output = f32
The resulting type after applying the -
operator.
fn sub(self, other: f32) -> f32
[src]
fn sub(self, other: f32) -> f32
Performs the -
operation.
impl<'a, 'b> Sub<&'a f32> for &'b f32
[src]
impl<'a, 'b> Sub<&'a f32> for &'b f32
type Output = <f32 as Sub<f32>>::Output
The resulting type after applying the -
operator.
fn sub(self, other: &'a f32) -> <f32 as Sub<f32>>::Output
[src]
fn sub(self, other: &'a f32) -> <f32 as Sub<f32>>::Output
Performs the -
operation.
impl<'a> Sub<f32> for &'a f32
[src]
impl<'a> Sub<f32> for &'a f32
type Output = <f32 as Sub<f32>>::Output
The resulting type after applying the -
operator.
fn sub(self, other: f32) -> <f32 as Sub<f32>>::Output
[src]
fn sub(self, other: f32) -> <f32 as Sub<f32>>::Output
Performs the -
operation.
impl<'a> Sub<&'a f32> for f32
[src]
impl<'a> Sub<&'a f32> for f32
type Output = <f32 as Sub<f32>>::Output
The resulting type after applying the -
operator.
fn sub(self, other: &'a f32) -> <f32 as Sub<f32>>::Output
[src]
fn sub(self, other: &'a f32) -> <f32 as Sub<f32>>::Output
Performs the -
operation.
impl<'a> Rem<&'a f32> for f32
[src]
impl<'a> Rem<&'a f32> for f32
type Output = <f32 as Rem<f32>>::Output
The resulting type after applying the %
operator.
fn rem(self, other: &'a f32) -> <f32 as Rem<f32>>::Output
[src]
fn rem(self, other: &'a f32) -> <f32 as Rem<f32>>::Output
Performs the %
operation.
impl Rem<f32> for f32
[src]
impl Rem<f32> for f32
type Output = f32
The resulting type after applying the %
operator.
fn rem(self, other: f32) -> f32
[src]
fn rem(self, other: f32) -> f32
Performs the %
operation.
impl<'a> Rem<f32> for &'a f32
[src]
impl<'a> Rem<f32> for &'a f32
type Output = <f32 as Rem<f32>>::Output
The resulting type after applying the %
operator.
fn rem(self, other: f32) -> <f32 as Rem<f32>>::Output
[src]
fn rem(self, other: f32) -> <f32 as Rem<f32>>::Output
Performs the %
operation.
impl<'a, 'b> Rem<&'a f32> for &'b f32
[src]
impl<'a, 'b> Rem<&'a f32> for &'b f32