Primitive Type f641.0.0 []

The 64-bit floating point type.

See also the std::f64 module.

Methods

impl f64
[src]

Returns true if this value is NaN and false otherwise.

use std::f64;

let nan = f64::NAN;
let f = 7.0_f64;

assert!(nan.is_nan());
assert!(!f.is_nan());Run

Returns true if this value is positive infinity or negative infinity and false otherwise.

use std::f64;

let f = 7.0f64;
let inf = f64::INFINITY;
let neg_inf = f64::NEG_INFINITY;
let nan = f64::NAN;

assert!(!f.is_infinite());
assert!(!nan.is_infinite());

assert!(inf.is_infinite());
assert!(neg_inf.is_infinite());Run

Returns true if this number is neither infinite nor NaN.

use std::f64;

let f = 7.0f64;
let inf: f64 = f64::INFINITY;
let neg_inf: f64 = f64::NEG_INFINITY;
let nan: f64 = f64::NAN;

assert!(f.is_finite());

assert!(!nan.is_finite());
assert!(!inf.is_finite());
assert!(!neg_inf.is_finite());Run

Returns true if the number is neither zero, infinite, subnormal, or NaN.

use std::f64;

let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308f64
let max = f64::MAX;
let lower_than_min = 1.0e-308_f64;
let zero = 0.0f64;

assert!(min.is_normal());
assert!(max.is_normal());

assert!(!zero.is_normal());
assert!(!f64::NAN.is_normal());
assert!(!f64::INFINITY.is_normal());
// Values between `0` and `min` are Subnormal.
assert!(!lower_than_min.is_normal());Run

Returns the floating point category of the number. If only one property is going to be tested, it is generally faster to use the specific predicate instead.

use std::num::FpCategory;
use std::f64;

let num = 12.4_f64;
let inf = f64::INFINITY;

assert_eq!(num.classify(), FpCategory::Normal);
assert_eq!(inf.classify(), FpCategory::Infinite);Run

Returns the largest integer less than or equal to a number.

let f = 3.99_f64;
let g = 3.0_f64;

assert_eq!(f.floor(), 3.0);
assert_eq!(g.floor(), 3.0);Run

Returns the smallest integer greater than or equal to a number.

let f = 3.01_f64;
let g = 4.0_f64;

assert_eq!(f.ceil(), 4.0);
assert_eq!(g.ceil(), 4.0);Run

Returns the nearest integer to a number. Round half-way cases away from 0.0.

let f = 3.3_f64;
let g = -3.3_f64;

assert_eq!(f.round(), 3.0);
assert_eq!(g.round(), -3.0);Run

Returns the integer part of a number.

let f = 3.3_f64;
let g = -3.7_f64;

assert_eq!(f.trunc(), 3.0);
assert_eq!(g.trunc(), -3.0);Run

Returns the fractional part of a number.

let x = 3.5_f64;
let y = -3.5_f64;
let abs_difference_x = (x.fract() - 0.5).abs();
let abs_difference_y = (y.fract() - (-0.5)).abs();

assert!(abs_difference_x < 1e-10);
assert!(abs_difference_y < 1e-10);Run

Computes the absolute value of self. Returns NAN if the number is NAN.

use std::f64;

let x = 3.5_f64;
let y = -3.5_f64;

let abs_difference_x = (x.abs() - x).abs();
let abs_difference_y = (y.abs() - (-y)).abs();

assert!(abs_difference_x < 1e-10);
assert!(abs_difference_y < 1e-10);

assert!(f64::NAN.abs().is_nan());Run

Returns a number that represents the sign of self.

  • 1.0 if the number is positive, +0.0 or INFINITY
  • -1.0 if the number is negative, -0.0 or NEG_INFINITY
  • NAN if the number is NAN
use std::f64;

let f = 3.5_f64;

assert_eq!(f.signum(), 1.0);
assert_eq!(f64::NEG_INFINITY.signum(), -1.0);

assert!(f64::NAN.signum().is_nan());Run

Returns true if and only if self has a positive sign, including +0.0, NaNs with positive sign bit and positive infinity.

let f = 7.0_f64;
let g = -7.0_f64;

assert!(f.is_sign_positive());
assert!(!g.is_sign_positive());Run

Deprecated since 1.0.0

: renamed to is_sign_positive

Returns true if and only if self has a negative sign, including -0.0, NaNs with negative sign bit and negative infinity.

let f = 7.0_f64;
let g = -7.0_f64;

assert!(!f.is_sign_negative());
assert!(g.is_sign_negative());Run

Deprecated since 1.0.0

: renamed to is_sign_negative

Fused multiply-add. Computes (self * a) + b with only one rounding error. This produces a more accurate result with better performance than a separate multiplication operation followed by an add.

let m = 10.0_f64;
let x = 4.0_f64;
let b = 60.0_f64;

// 100.0
let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs();

assert!(abs_difference < 1e-10);Run

Takes the reciprocal (inverse) of a number, 1/x.

let x = 2.0_f64;
let abs_difference = (x.recip() - (1.0/x)).abs();

assert!(abs_difference < 1e-10);Run

Raises a number to an integer power.

Using this function is generally faster than using powf

let x = 2.0_f64;
let abs_difference = (x.powi(2) - x*x).abs();

assert!(abs_difference < 1e-10);Run

Raises a number to a floating point power.

let x = 2.0_f64;
let abs_difference = (x.powf(2.0) - x*x).abs();

assert!(abs_difference < 1e-10);Run

Takes the square root of a number.

Returns NaN if self is a negative number.

let positive = 4.0_f64;
let negative = -4.0_f64;

let abs_difference = (positive.sqrt() - 2.0).abs();

assert!(abs_difference < 1e-10);
assert!(negative.sqrt().is_nan());Run

Returns e^(self), (the exponential function).

let one = 1.0_f64;
// e^1
let e = one.exp();

// ln(e) - 1 == 0
let abs_difference = (e.ln() - 1.0).abs();

assert!(abs_difference < 1e-10);Run

Returns 2^(self).

let f = 2.0_f64;

// 2^2 - 4 == 0
let abs_difference = (f.exp2() - 4.0).abs();

assert!(abs_difference < 1e-10);Run

Returns the natural logarithm of the number.

let one = 1.0_f64;
// e^1
let e = one.exp();

// ln(e) - 1 == 0
let abs_difference = (e.ln() - 1.0).abs();

assert!(abs_difference < 1e-10);Run

Returns the logarithm of the number with respect to an arbitrary base.

The result may not be correctly rounded owing to implementation details; self.log2() can produce more accurate results for base 2, and self.log10() can produce more accurate results for base 10.

let five = 5.0_f64;

// log5(5) - 1 == 0
let abs_difference = (five.log(5.0) - 1.0).abs();

assert!(abs_difference < 1e-10);Run

Returns the base 2 logarithm of the number.

let two = 2.0_f64;

// log2(2) - 1 == 0
let abs_difference = (two.log2() - 1.0).abs();

assert!(abs_difference < 1e-10);Run

Returns the base 10 logarithm of the number.

let ten = 10.0_f64;

// log10(10) - 1 == 0
let abs_difference = (ten.log10() - 1.0).abs();

assert!(abs_difference < 1e-10);Run

Converts radians to degrees.

use std::f64::consts;

let angle = consts::PI;

let abs_difference = (angle.to_degrees() - 180.0).abs();

assert!(abs_difference < 1e-10);Run

Converts degrees to radians.

use std::f64::consts;

let angle = 180.0_f64;

let abs_difference = (angle.to_radians() - consts::PI).abs();

assert!(abs_difference < 1e-10);Run

Returns the maximum of the two numbers.

let x = 1.0_f64;
let y = 2.0_f64;

assert_eq!(x.max(y), y);Run

If one of the arguments is NaN, then the other argument is returned.

Returns the minimum of the two numbers.

let x = 1.0_f64;
let y = 2.0_f64;

assert_eq!(x.min(y), x);Run

If one of the arguments is NaN, then the other argument is returned.

Deprecated since 1.10.0

: you probably meant (self - other).abs(): this operation is (self - other).max(0.0) (also known as fdim in C). If you truly need the positive difference, consider using that expression or the C function fdim, depending on how you wish to handle NaN (please consider filing an issue describing your use-case too).

The positive difference of two numbers.

  • If self <= other: 0:0
  • Else: self - other
let x = 3.0_f64;
let y = -3.0_f64;

let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs();
let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs();

assert!(abs_difference_x < 1e-10);
assert!(abs_difference_y < 1e-10);Run

Takes the cubic root of a number.

let x = 8.0_f64;

// x^(1/3) - 2 == 0
let abs_difference = (x.cbrt() - 2.0).abs();

assert!(abs_difference < 1e-10);Run

Calculates the length of the hypotenuse of a right-angle triangle given legs of length x and y.

let x = 2.0_f64;
let y = 3.0_f64;

// sqrt(x^2 + y^2)
let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();

assert!(abs_difference < 1e-10);Run

Computes the sine of a number (in radians).

use std::f64;

let x = f64::consts::PI/2.0;

let abs_difference = (x.sin() - 1.0).abs();

assert!(abs_difference < 1e-10);Run

Computes the cosine of a number (in radians).

use std::f64;

let x = 2.0*f64::consts::PI;

let abs_difference = (x.cos() - 1.0).abs();

assert!(abs_difference < 1e-10);Run

Computes the tangent of a number (in radians).

use std::f64;

let x = f64::consts::PI/4.0;
let abs_difference = (x.tan() - 1.0).abs();

assert!(abs_difference < 1e-14);Run

Computes the arcsine of a number. Return value is in radians in the range [-pi/2, pi/2] or NaN if the number is outside the range [-1, 1].

use std::f64;

let f = f64::consts::PI / 2.0;

// asin(sin(pi/2))
let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs();

assert!(abs_difference < 1e-10);Run

Computes the arccosine of a number. Return value is in radians in the range [0, pi] or NaN if the number is outside the range [-1, 1].

use std::f64;

let f = f64::consts::PI / 4.0;

// acos(cos(pi/4))
let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs();

assert!(abs_difference < 1e-10);Run

Computes the arctangent of a number. Return value is in radians in the range [-pi/2, pi/2];

let f = 1.0_f64;

// atan(tan(1))
let abs_difference = (f.tan().atan() - 1.0).abs();

assert!(abs_difference < 1e-10);Run

Computes the four quadrant arctangent of self (y) and other (x) in radians.

  • x = 0, y = 0: 0
  • x >= 0: arctan(y/x) -> [-pi/2, pi/2]
  • y >= 0: arctan(y/x) + pi -> (pi/2, pi]
  • y < 0: arctan(y/x) - pi -> (-pi, -pi/2)
use std::f64;

let pi = f64::consts::PI;
// Positive angles measured counter-clockwise
// from positive x axis
// -pi/4 radians (45 deg clockwise)
let x1 = 3.0_f64;
let y1 = -3.0_f64;

// 3pi/4 radians (135 deg counter-clockwise)
let x2 = -3.0_f64;
let y2 = 3.0_f64;

let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs();
let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs();

assert!(abs_difference_1 < 1e-10);
assert!(abs_difference_2 < 1e-10);Run

Simultaneously computes the sine and cosine of the number, x. Returns (sin(x), cos(x)).

use std::f64;

let x = f64::consts::PI/4.0;
let f = x.sin_cos();

let abs_difference_0 = (f.0 - x.sin()).abs();
let abs_difference_1 = (f.1 - x.cos()).abs();

assert!(abs_difference_0 < 1e-10);
assert!(abs_difference_1 < 1e-10);Run

Returns e^(self) - 1 in a way that is accurate even if the number is close to zero.

let x = 7.0_f64;

// e^(ln(7)) - 1
let abs_difference = (x.ln().exp_m1() - 6.0).abs();

assert!(abs_difference < 1e-10);Run

Returns ln(1+n) (natural logarithm) more accurately than if the operations were performed separately.

use std::f64;

let x = f64::consts::E - 1.0;

// ln(1 + (e - 1)) == ln(e) == 1
let abs_difference = (x.ln_1p() - 1.0).abs();

assert!(abs_difference < 1e-10);Run

Hyperbolic sine function.

use std::f64;

let e = f64::consts::E;
let x = 1.0_f64;

let f = x.sinh();
// Solving sinh() at 1 gives `(e^2-1)/(2e)`
let g = (e*e - 1.0)/(2.0*e);
let abs_difference = (f - g).abs();

assert!(abs_difference < 1e-10);Run

Hyperbolic cosine function.

use std::f64;

let e = f64::consts::E;
let x = 1.0_f64;
let f = x.cosh();
// Solving cosh() at 1 gives this result
let g = (e*e + 1.0)/(2.0*e);
let abs_difference = (f - g).abs();

// Same result
assert!(abs_difference < 1.0e-10);Run

Hyperbolic tangent function.

use std::f64;

let e = f64::consts::E;
let x = 1.0_f64;

let f = x.tanh();
// Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))`
let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2));
let abs_difference = (f - g).abs();

assert!(abs_difference < 1.0e-10);Run

Inverse hyperbolic sine function.

let x = 1.0_f64;
let f = x.sinh().asinh();

let abs_difference = (f - x).abs();

assert!(abs_difference < 1.0e-10);Run

Inverse hyperbolic cosine function.

let x = 1.0_f64;
let f = x.cosh().acosh();

let abs_difference = (f - x).abs();

assert!(abs_difference < 1.0e-10);Run

Inverse hyperbolic tangent function.

use std::f64;

let e = f64::consts::E;
let f = e.tanh().atanh();

let abs_difference = (f - e).abs();

assert!(abs_difference < 1.0e-10);Run

Raw transmutation to u64.

This is currently identical to transmute::<f64, u64>(self) on all platforms.

See from_bits for some discussion of the portability of this operation (there are almost no issues).

Note that this function is distinct from as casting, which attempts to preserve the numeric value, and not the bitwise value.

Examples

assert!((1f64).to_bits() != 1f64 as u64); // to_bits() is not casting!
assert_eq!((12.5f64).to_bits(), 0x4029000000000000);
Run

Raw transmutation from u64.

This is currently identical to transmute::<u64, f64>(v) on all platforms. It turns out this is incredibly portable, for two reasons:

  • Floats and Ints have the same endianness on all supported platforms.
  • IEEE-754 very precisely specifies the bit layout of floats.

However there is one caveat: prior to the 2008 version of IEEE-754, how to interpret the NaN signaling bit wasn't actually specified. Most platforms (notably x86 and ARM) picked the interpretation that was ultimately standardized in 2008, but some didn't (notably MIPS). As a result, all signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.

Rather than trying to preserve signaling-ness cross-platform, this implementation favours preserving the exact bits. This means that any payloads encoded in NaNs will be preserved even if the result of this method is sent over the network from an x86 machine to a MIPS one.

If the results of this method are only manipulated by the same architecture that produced them, then there is no portability concern.

If the input isn't NaN, then there is no portability concern.

If you don't care about signalingness (very likely), then there is no portability concern.

Note that this function is distinct from as casting, which attempts to preserve the numeric value, and not the bitwise value.

Examples

use std::f64;
let v = f64::from_bits(0x4029000000000000);
let difference = (v - 12.5).abs();
assert!(difference <= 1e-5);Run

Trait Implementations

impl<'a, 'b> Div<&'a f64> for &'b f64
[src]

The resulting type after applying the / operator.

Performs the / operation.

impl<'a> Div<f64> for &'a f64
[src]

The resulting type after applying the / operator.

Performs the / operation.

impl<'a> Div<&'a f64> for f64
[src]

The resulting type after applying the / operator.

Performs the / operation.

impl Div<f64> for f64
[src]

The resulting type after applying the / operator.

Performs the / operation.

impl Debug for f64
[src]

Formats the value using the given formatter. Read more

impl Add<f64> for f64
[src]

The resulting type after applying the + operator.

Performs the + operation.

impl<'a> Add<&'a f64> for f64
[src]

The resulting type after applying the + operator.

Performs the + operation.

impl<'a> Add<f64> for &'a f64
[src]

The resulting type after applying the + operator.

Performs the + operation.

impl<'a, 'b> Add<&'a f64> for &'b f64
[src]

The resulting type after applying the + operator.

Performs the + operation.

impl Sum<f64> for f64
1.12.0
[src]

Method which takes an iterator and generates Self from the elements by "summing up" the items. Read more

impl<'a> Sum<&'a f64> for f64
1.12.0
[src]

Method which takes an iterator and generates Self from the elements by "summing up" the items. Read more

impl DivAssign<f64> for f64
1.8.0
[src]

Performs the /= operation.

impl<'a> DivAssign<&'a f64> for f64
1.22.0
[src]

Performs the /= operation.

impl SubAssign<f64> for f64
1.8.0
[src]

Performs the -= operation.

impl<'a> SubAssign<&'a f64> for f64
1.22.0
[src]

Performs the -= operation.

impl PartialEq<f64> for f64
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl From<u8> for f64
1.6.0
[src]

Performs the conversion.

impl From<i32> for f64
1.6.0
[src]

Performs the conversion.

impl From<i16> for f64
1.6.0
[src]

Performs the conversion.

impl From<f32> for f64
1.6.0
[src]

Performs the conversion.

impl From<u32> for f64
1.6.0
[src]

Performs the conversion.

impl From<i8> for f64
1.6.0
[src]

Performs the conversion.

impl From<u16> for f64
1.6.0
[src]

Performs the conversion.

impl LowerExp for f64
[src]

Formats the value using the given formatter.

impl FromStr for f64
[src]

The associated error which can be returned from parsing.

Converts a string in base 10 to a float. Accepts an optional decimal exponent.

This function accepts strings such as

  • '3.14'
  • '-3.14'
  • '2.5E10', or equivalently, '2.5e10'
  • '2.5E-10'
  • '5.'
  • '.5', or, equivalently, '0.5'
  • 'inf', '-inf', 'NaN'

Leading and trailing whitespace represent an error.

Arguments

  • src - A string

Return value

Err(ParseFloatError) if the string did not represent a valid number. Otherwise, Ok(n) where n is the floating-point number represented by src.

impl Display for f64
[src]

Formats the value using the given formatter. Read more

impl<'a, 'b> Mul<&'a f64> for &'b f64
[src]

The resulting type after applying the * operator.

Performs the * operation.

impl Mul<f64> for f64
[src]

The resulting type after applying the * operator.

Performs the * operation.

impl<'a> Mul<&'a f64> for f64
[src]

The resulting type after applying the * operator.

Performs the * operation.

impl<'a> Mul<f64> for &'a f64
[src]

The resulting type after applying the * operator.

Performs the * operation.

impl<'a> Product<&'a f64> for f64
1.12.0
[src]

Method which takes an iterator and generates Self from the elements by multiplying the items. Read more

impl Product<f64> for f64
1.12.0
[src]

Method which takes an iterator and generates Self from the elements by multiplying the items. Read more

impl<'a> RemAssign<&'a f64> for f64
1.22.0
[src]

Performs the %= operation.

impl RemAssign<f64> for f64
1.8.0
[src]

Performs the %= operation.

impl<'a> MulAssign<&'a f64> for f64
1.22.0
[src]

Performs the *= operation.

impl MulAssign<f64> for f64
1.8.0
[src]

Performs the *= operation.

impl<'a> AddAssign<&'a f64> for f64
1.22.0
[src]

Performs the += operation.

impl AddAssign<f64> for f64
1.8.0
[src]

Performs the += operation.

impl UpperExp for f64
[src]

Formats the value using the given formatter.

impl<'a> Neg for &'a f64
[src]

The resulting type after applying the - operator.

Performs the unary - operation.

impl Neg for f64
[src]

The resulting type after applying the - operator.

Performs the unary - operation.

impl Default for f64
[src]

Returns the default value of 0.0

impl PartialOrd<f64> for f64
[src]

This method returns an ordering between self and other values if one exists. Read more

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

impl<'a, 'b> Sub<&'a f64> for &'b f64
[src]

The resulting type after applying the - operator.

Performs the - operation.

impl<'a> Sub<&'a f64> for f64
[src]

The resulting type after applying the - operator.

Performs the - operation.

impl<'a> Sub<f64> for &'a f64
[src]

The resulting type after applying the - operator.

Performs the - operation.

impl Sub<f64> for f64
[src]

The resulting type after applying the - operator.

Performs the - operation.

impl<'a, 'b> Rem<&'a f64> for &'b f64
[src]

The resulting type after applying the % operator.

Performs the % operation.

impl Rem<f64> for f64
[src]

The resulting type after applying the % operator.

Performs the % operation.

impl<'a> Rem<&'a f64> for f64
[src]

The resulting type after applying the % operator.

Performs the % operation.

impl<'a> Rem<f64> for &'a f64
[src]

The resulting type after applying the % operator.

Performs the % operation.