IdealSolidSolnPhase Class Reference
[Thermodynamic Properties]

Class IdealSolidSolnPhase represents a condensed phase ideal solution compound. More...

#include <IdealSolidSolnPhase.h>

Inheritance diagram for IdealSolidSolnPhase:
Inheritance graph
[legend]
Collaboration diagram for IdealSolidSolnPhase:
Collaboration graph
[legend]

List of all members.

Public Member Functions

 IdealSolidSolnPhase (int formCG=0)
 Constructor for IdealSolidSolnPhase.
 IdealSolidSolnPhase (std::string infile, std::string id="", int formCG=0)
 Construct and initialize an IdealSolidSolnPhase ThermoPhase object directly from an asci input file.
 IdealSolidSolnPhase (XML_Node &root, std::string id="", int formCG=0)
 Construct and initialize an IdealSolidSolnPhase ThermoPhase object directly from an XML database.
 IdealSolidSolnPhase (const IdealSolidSolnPhase &)
IdealSolidSolnPhaseoperator= (const IdealSolidSolnPhase &)
virtual ThermoPhaseduplMyselfAsThermoPhase () const
virtual ~IdealSolidSolnPhase ()
 Destructor.
virtual int eosType () const
 Equation of state flag.
doublereal _RT () const
 Return the Gas Constant multiplied by the current temperature.
bool chargeNeutralityNecessary () const
 Returns the chargeNeutralityNecessity boolean.
virtual std::string report (bool show_thermo=true) const
 returns a summary of the state of the phase as a string
XML_Nodexml ()
 Returns a reference to the XML_Node storred for the phase.
std::string id () const
 Return the string id for the phase.
void setID (std::string id)
 Set the string id for the phase.
std::string name () const
 Return the name of the phase.
void setName (std::string nm)
 Sets the string name for the phase.
void saveState (vector_fp &state) const
 Save the current internal state of the phase.
void saveState (int lenstate, doublereal *state) const
 Write to array 'state' the current internal state.
void restoreState (const vector_fp &state)
 Restore a state saved on a previous call to saveState.
void restoreState (int lenstate, const doublereal *state)
 Restore the state of the phase from a previously saved state vector.
void setMoleFractionsByName (compositionMap &xMap)
 Set the species mole fractions by name.
void setMoleFractionsByName (const std::string &x)
 Set the mole fractions of a group of species by name.
void setMassFractionsByName (compositionMap &yMap)
 Set the species mass fractions by name.
void setMassFractionsByName (const std::string &x)
 Set the species mass fractions by name.
void setState_TRX (doublereal t, doublereal dens, const doublereal *x)
 Set the internally storred temperature (K), density, and mole fractions.
void setState_TRX (doublereal t, doublereal dens, compositionMap &x)
 Set the internally storred temperature (K), density, and mole fractions.
void setState_TRY (doublereal t, doublereal dens, const doublereal *y)
 Set the internally storred temperature (K), density, and mass fractions.
void setState_TRY (doublereal t, doublereal dens, compositionMap &y)
 Set the internally storred temperature (K), density, and mass fractions.
void setState_TNX (doublereal t, doublereal n, const doublereal *x)
 Set the internally storred temperature (K), molar density (kmol/m^3), and mole fractions.
void setState_TR (doublereal t, doublereal rho)
 Set the internally storred temperature (K) and density (kg/m^3).
void setState_TX (doublereal t, doublereal *x)
 Set the internally storred temperature (K) and mole fractions.
void setState_TY (doublereal t, doublereal *y)
 Set the internally storred temperature (K) and mass fractions.
void setState_RX (doublereal rho, doublereal *x)
 Set the density (kg/m^3) and mole fractions.
void setState_RY (doublereal rho, doublereal *y)
 Set the density (kg/m^3) and mass fractions.
void getMolecularWeights (vector_fp &weights) const
 Copy the vector of molecular weights into vector weights.
void getMolecularWeights (int iwt, doublereal *weights) const
 Copy the vector of molecular weights into array weights.
void getMolecularWeights (doublereal *weights) const
 Copy the vector of molecular weights into array weights.
const array_fp & molecularWeights () const
 Return a const reference to the internal vector of molecular weights.
void getMoleFractionsByName (compositionMap &x) const
 Get the mole fractions by name.
doublereal moleFraction (int k) const
 Return the mole fraction of a single species.
doublereal moleFraction (std::string name) const
 Return the mole fraction of a single species.
doublereal massFraction (int k) const
 Return the mass fraction of a single species.
doublereal massFraction (std::string name) const
 Return the mass fraction of a single species.
doublereal chargeDensity () const
 Charge density [C/m^3].
int nDim () const
 Returns the number of spatial dimensions (1, 2, or 3).
void setNDim (int ndim)
 Set the number of spatial dimensions (1, 2, or 3).
virtual void freezeSpecies ()
 Finished adding species, prepare to use them for calculation of mixture properties.
virtual bool ready () const
 True if both elements and species have been frozen.
int nSpecies () const
 Returns the number of species in the phase.
doublereal molecularWeight (int k) const
 Molecular weight of species k.
doublereal molarMass (int k) const
 Return the Molar mass of species k.
doublereal charge (int k) const
doublereal nAtoms (int k, int m) const
 Number of atoms of element m in species k.
void getAtoms (int k, double *atomArray) const
 Get a vector containing the atomic composition of species k.
void stateMFChangeCalc (bool forceChange=false)
 Every time the mole fractions have changed, this routine will increment the stateMFNumber.
int stateMFNumber () const
 Return the state number.
Molar Thermodynamic Properties of the Solution ------------------------

virtual doublereal enthalpy_mole () const
 Molar enthalpy of the solution.
virtual doublereal intEnergy_mole () const
 Molar internal energy of the solution.
virtual doublereal entropy_mole () const
 Molar entropy of the solution.
virtual doublereal gibbs_mole () const
 Molar gibbs free energy of the solution.
virtual doublereal cp_mole () const
 Molar heat capacity at constant pressure of the solution.
virtual doublereal cv_mole () const
 Molar heat capacity at constant volume of the solution.
Mechanical Equation of State Properties ------------------------------------

In this equation of state implementation, the density is a function only of the mole fractions.

Therefore, it can't be an independent variable. Instead, the pressure is used as the independent variable. Functions which try to set the thermodynamic state by calling setDensity() may cause an exception to be thrown.

virtual doublereal pressure () const
 Pressure.
virtual void setPressure (doublereal p)
 Set the pressure at constant temperature.
void calcDensity ()
 Calculate the density of the mixture using the partial molar volumes and mole fractions as input.
virtual void setDensity (const doublereal rho)
 Overwritten setDensity() function is necessary because the density is not an indendent variable.
virtual void setMolarDensity (const doublereal rho)
 Overwritten setMolarDensity() function is necessary because the density is not an independent variable.
virtual void setMoleFractions (const doublereal *const x)
 Set the mole fractions.
virtual void setMoleFractions_NoNorm (const doublereal *const x)
 Set the mole fractions, but don't normalize them to one.
virtual void setMassFractions (const doublereal *const y)
 Set the mass fractions, and normalize them to one.
virtual void setMassFractions_NoNorm (const doublereal *const y)
 Set the mass fractions, but don't normalize them to one.
virtual void setConcentrations (const doublereal *const c)
 Set the concentration,.
Chemical Potentials and Activities -----------------------------------------

The activity $a_k$ of a species in solution is related to the chemical potential by

\[ \mu_k(T,P,X_k) = \mu_k^0(T,P) + \hat R T \log a_k. \]

The quantity $\mu_k^0(T,P)$ is the standard state chemical potential at unit activity.

It may depend on the pressure and the temperature. However, it may not depend on the mole fractions of the species in the solid solution.

The activities are related to the generalized concentrations, $\tilde C_k$, and standard concentrations, $C^0_k$, by the following formula:

\[ a_k = \frac{\tilde C_k}{C^0_k} \]

The generalized concentrations are used in the kinetics classes to describe the rates of progress of reactions involving the species. Their formulation depends upons the specification of the rate constants for reaction, especially the units used in specifying the rate constants. The bridge between the thermodynamic equilibrium expressions that use a_k and the kinetics expressions which use the generalized concentrations is provided by the multiplicative factor of the standard concentrations.

virtual void getActivityConcentrations (doublereal *c) const
 This method returns the array of generalized concentrations.
virtual doublereal standardConcentration (int k) const
 The standard concentration $ C^0_k $ used to normalize the generalized concentration.
virtual doublereal referenceConcentration (int k) const
 The reference (ie standard) concentration $ C^0_k $ used to normalize the generalized concentration.
virtual doublereal logStandardConc (int k) const
 Returns the log of the standard concentration of the kth species.
virtual void getUnitsStandardConc (double *uA, int k=0, int sizeUA=6) const
 Returns the units of the standard and general concentrations Note they have the same units, as their divisor is defined to be equal to the activity of the kth species in the solution, which is unitless.
virtual void getActivityCoefficients (doublereal *ac) const
 Get the array of species activity coefficients.
virtual void getChemPotentials (doublereal *mu) const
 Get the species chemical potentials.
virtual void getChemPotentials_RT (doublereal *mu) const
 Get the array of non-dimensional species solution chemical potentials at the current T and P $\mu_k / \hat R T $.
Partial Molar Properties of the Solution -----------------------------

virtual void getPartialMolarEnthalpies (doublereal *hbar) const
 Returns an array of partial molar enthalpies for the species in the mixture.
virtual void getPartialMolarEntropies (doublereal *sbar) const
 Returns an array of partial molar entropies of the species in the solution.
virtual void getPartialMolarCp (doublereal *cpbar) const
 Returns an array of partial molar Heat Capacities at constant pressure of the species in the solution.
virtual void getPartialMolarVolumes (doublereal *vbar) const
 returns an array of partial molar volumes of the species in the solution.
Properties of the Standard State of the Species in the Solution -------------------------------------

virtual void getStandardChemPotentials (doublereal *mu0) const
 Get the standard state chemical potentials of the species.
void getEnthalpy_RT (doublereal *hrt) const
 Get the array of nondimensional Enthalpy functions for the standard state species at the current T and P of the solution.
void getEntropy_R (doublereal *sr) const
 Get the nondimensional Entropies for the species standard states at the current T and P of the solution.
virtual void getGibbs_RT (doublereal *grt) const
 Get the nondimensional gibbs function for the species standard states at the current T and P of the solution.
virtual void getPureGibbs (doublereal *gpure) const
 Get the Gibbs functions for the pure species at the current T and P of the solution.
virtual void getIntEnergy_RT (doublereal *urt) const
 Returns the vector of nondimensional internal Energies of the standard state at the current temperature and pressure of the solution for each species.
void getCp_R (doublereal *cpr) const
 Get the nondimensional heat capacity at constant pressure function for the species standard states at the current T and P of the solution.
virtual void getStandardVolumes (doublereal *vol) const
 Get the molar volumes of each species in their standard states at the current T and P of the solution.
Thermodynamic Values for the Species Reference States ------

virtual void getEnthalpy_RT_ref (doublereal *hrt) const
 Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species.
virtual void getGibbs_RT_ref (doublereal *grt) const
 Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species.
virtual void getGibbs_ref (doublereal *g) const
 Returns the vector of the gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species.
virtual void getEntropy_R_ref (doublereal *er) const
 Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for the species.
virtual void getIntEnergy_RT_ref (doublereal *urt) const
 Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species.
virtual void getCp_R_ref (doublereal *cprt) const
 Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for the species.
const array_fp & enthalpy_RT_ref () const
 Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature.
const array_fp & gibbs_RT_ref () const
 Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature.
const array_fp & expGibbs_RT_ref () const
 Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature.
const array_fp & entropy_R_ref () const
 Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature.
const array_fp & cp_R_ref () const
 Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature.
virtual void setPotentialEnergy (int k, doublereal pe)
virtual doublereal potentialEnergy (int k) const
Utility Functions -----------------------------------------------

void constructPhaseFile (std::string infile, std::string id="")
 Initialization of an IdealSolidSolnPhase phase using an xml file.
void constructPhaseXML (XML_Node &phaseNode, std::string id="")
 Import and initialize an IdealSolidSolnPhase phase specification in an XML tree into the current object.
virtual void initThermo ()
 Initialization of an IdealSolidSolnPhase phase: Note this function is pretty much useless because it doesn't get the xml tree passed to it.
virtual void initThermoXML (XML_Node &phaseNode, std::string id)
virtual void setToEquilState (const doublereal *lambda_RT)
 Set mixture to an equilibrium state consistent with specified element potentials and the temperature.
double speciesMolarVolume (int k) const
 Report the molar volume of species k.
void getSpeciesMolarVolumes (doublereal *smv) const
 Fill in a return vector containing the species molar volumes.
Information Methods

doublereal refPressure () const
 Returns the reference pressure in Pa.
doublereal minTemp (int k=-1) const
 Minimum temperature for which the thermodynamic data for the species or phase are valid.
doublereal Hf298SS (const int k) const
 Report the 298 K Heat of Formation of the standard state of one species (J kmol-1).
virtual void modifyOneHf298SS (const int k, const doublereal Hf298New)
 Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1).
doublereal maxTemp (int k=-1) const
 Maximum temperature for which the thermodynamic data for the species are valid.
Molar Thermodynamic Properties of the Solution

virtual void getdlnActCoeffdlnC (doublereal *dlnActCoeffdlnC) const
 Get the array of log concentration-like derivatives of the log activity coefficients.
Mechanical Properties

virtual doublereal isothermalCompressibility () const
 Returns the isothermal compressibility. Units: 1/Pa.
virtual doublereal thermalExpansionCoeff () const
 Return the volumetric thermal expansion coefficient. Units: 1/K.
virtual void updateDensity ()
Electric Potential

The phase may be at some non-zero electrical potential.

These methods set or get the value of the electric potential.

void setElectricPotential (doublereal v)
 Set the electric potential of this phase (V).
doublereal electricPotential () const
 Returns the electric potential of this phase (V).
Activities, Standard States, and Activity Concentrations

The activity $a_k$ of a species in solution is related to the chemical potential by

\[ \mu_k = \mu_k^0(T,P) + \hat R T \log a_k. \]

The quantity $\mu_k^0(T,P)$ is the standard chemical potential at unit activity, which depends on temperature and pressure, but not on composition.

The activity is dimensionless.

virtual int activityConvention () const
 This method returns the convention used in specification of the activities, of which there are currently two, molar- and molality-based conventions.
virtual int standardStateConvention () const
 This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based.
virtual void getActivities (doublereal *a) const
 Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration.
virtual void getLNActivityCoefficients (doublereal *const lnac) const
Partial Molar Properties of the Solution

void getElectrochemPotentials (doublereal *mu) const
 Get the species electrochemical potentials.
virtual void getPartialMolarIntEnergies (doublereal *ubar) const
 Return an array of partial molar internal energies for the species in the mixture.
Thermodynamic Values for the Species Reference States

virtual void getStandardVolumes_ref (doublereal *vol) const
 Get the molar volumes of the species reference states at the current T and P_ref of the solution.
virtual void setReferenceComposition (const doublereal *const x)
 Sets the reference composition.
virtual void getReferenceComposition (doublereal *const x) const
 Gets the reference composition.
Specific Properties

doublereal enthalpy_mass () const
 Specific enthalpy.
doublereal intEnergy_mass () const
 Specific internal energy.
doublereal entropy_mass () const
 Specific entropy.
doublereal gibbs_mass () const
 Specific Gibbs function.
doublereal cp_mass () const
 Specific heat at constant pressure.
doublereal cv_mass () const
 Specific heat at constant volume.
Setting the State

These methods set all or part of the thermodynamic state.

void setState_TPX (doublereal t, doublereal p, const doublereal *x)
 Set the temperature (K), pressure (Pa), and mole fractions.
void setState_TPX (doublereal t, doublereal p, compositionMap &x)
 Set the temperature (K), pressure (Pa), and mole fractions.
void setState_TPX (doublereal t, doublereal p, const std::string &x)
 Set the temperature (K), pressure (Pa), and mole fractions.
void setState_TPY (doublereal t, doublereal p, const doublereal *y)
 Set the internally storred temperature (K), pressure (Pa), and mass fractions of the phase.
void setState_TPY (doublereal t, doublereal p, compositionMap &y)
 Set the internally storred temperature (K), pressure (Pa), and mass fractions of the phase.
void setState_TPY (doublereal t, doublereal p, const std::string &y)
 Set the internally storred temperature (K), pressure (Pa), and mass fractions of the phase.
void setState_TP (doublereal t, doublereal p)
 Set the temperature (K) and pressure (Pa).
void setState_PX (doublereal p, doublereal *x)
 Set the pressure (Pa) and mole fractions.
void setState_PY (doublereal p, doublereal *y)
 Set the internally storred pressure (Pa) and mass fractions.
virtual void setState_HP (doublereal h, doublereal p, doublereal tol=1.e-4)
 Set the internally storred specific enthalpy (J/kg) and pressure (Pa) of the phase.
virtual void setState_UV (doublereal u, doublereal v, doublereal tol=1.e-4)
 Set the specific internal energy (J/kg) and specific volume (m^3/kg).
virtual void setState_SP (doublereal s, doublereal p, doublereal tol=1.e-4)
 Set the specific entropy (J/kg/K) and pressure (Pa).
virtual void setState_SV (doublereal s, doublereal v, doublereal tol=1.e-4)
 Set the specific entropy (J/kg/K) and specific volume (m^3/kg).
Chemical Equilibrium

Chemical equilibrium.

void setElementPotentials (const vector_fp &lambda)
 Stores the element potentials in the ThermoPhase object.
bool getElementPotentials (doublereal *lambda) const
 Returns the element potentials storred in the ThermoPhase object.
Critical State Properties.

These methods are only implemented by some subclasses, and may be moved out of ThermoPhase at a later date.

virtual doublereal critTemperature () const
 Critical temperature (K).
virtual doublereal critPressure () const
 Critical pressure (Pa).
virtual doublereal critDensity () const
 Critical density (kg/m3).
Saturation Properties.

These methods are only implemented by subclasses that implement full liquid-vapor equations of state.

They may be moved out of ThermoPhase at a later date.

virtual doublereal satTemperature (doublereal p) const
 Return the saturation temperature given the pressure.
virtual doublereal satPressure (doublereal t) const
 Return the saturation pressure given the temperature.
virtual doublereal vaporFraction () const
 Return the fraction of vapor at the current conditions.
virtual void setState_Tsat (doublereal t, doublereal x)
 Set the state to a saturated system at a particular temperature.
virtual void setState_Psat (doublereal p, doublereal x)
 Set the state to a saturated system at a particular pressure.
Initialization Methods - For Internal Use (ThermoPhase)

void saveSpeciesData (const int k, const XML_Node *const data)
 Store a reference pointer to the XML tree containing the species data for this phase.
const std::vector< const
XML_Node * > & 
speciesData () const
 Return a pointer to the vector of XML nodes containing the species data for this phase.
void setSpeciesThermo (SpeciesThermo *spthermo)
 Install a species thermodynamic property manager.
SpeciesThermospeciesThermo ()
 Return a changeable reference to the calculation manager for species reference-state thermodynamic properties.
virtual void initThermoFile (std::string inputFile, std::string id)
int index () const
void setIndex (int m)
virtual void setParameters (int n, doublereal *const c)
 Set the equation of state parameters.
virtual void getParameters (int &n, doublereal *const c) const
 Get the equation of state parameters in a vector.
virtual void setParametersFromXML (const XML_Node &eosdata)
 Set equation of state parameter values from XML entries.
virtual void setStateFromXML (const XML_Node &state)
 Set the initial state of the phase to the conditions specified in the state XML element.
Element Information

std::string elementName (int m) const
 Name of the element with index m.
int elementIndex (std::string name) const
 Index of element named 'name'.
doublereal atomicWeight (int m) const
 Atomic weight of element m.
doublereal entropyElement298 (int m) const
 Entropy of the element in its standard state at 298 K and 1 bar.
int atomicNumber (int m) const
 Atomic number of element m.
const std::vector< std::string > & elementNames () const
 Return a read-only reference to the vector of element names.
const vector_fp & atomicWeights () const
 Return a read-only reference to the vector of atomic weights.
int nElements () const
 Number of elements.
Adding Elements and Species

These methods are used to add new elements or species.

These are not usually called by user programs.

Since species are checked to insure that they are only composed of declared elements, it is necessary to first add all elements before adding any species.

void addElement (const std::string &symbol, doublereal weight)
 Add an element.
void addElement (const XML_Node &e)
 Add an element from an XML specification.
void addUniqueElement (const std::string &symbol, doublereal weight, int atomicNumber=0, doublereal entropy298=ENTROPY298_UNKNOWN)
 Add an element, checking for uniqueness.
void addUniqueElement (const XML_Node &e)
 Adde an element, checking for uniqueness.
void addElementsFromXML (const XML_Node &phase)
 Add all elements referenced in an XML_Node tree.
void freezeElements ()
 Prohibit addition of more elements, and prepare to add species.
bool elementsFrozen ()
 True if freezeElements has been called.
Adding Species

These methods are used to add new species.

They are not usually called by user programs.

void addSpecies (const std::string &name, const doublereal *comp, doublereal charge=0.0, doublereal size=1.0)
void addUniqueSpecies (const std::string &name, const doublereal *comp, doublereal charge=0.0, doublereal size=1.0)
 Add a species to the phase, checking for uniqueness of the name.
int speciesIndex (std::string name) const
 Index of species named 'name'.
std::string speciesName (int k) const
 Name of the species with index k.
const std::vector< std::string > & speciesNames () const
 Return a const referernce to the vector of species names.
doublereal size (int k) const
 This routine returns the size of species k.
bool speciesFrozen ()
 True if freezeSpecies has been called.
void clear ()
 Remove all elements and species.
Composition

void getMoleFractions (doublereal *const x) const
 Get the species mole fraction vector.
void getMassFractions (doublereal *const y) const
 Get the species mass fractions.
void getConcentrations (doublereal *const c) const
 Get the species concentrations (kmol/m^3).
doublereal concentration (const int k) const
 Concentration of species k.
const doublereal * massFractions () const
 Returns a read-only pointer to the start of the massFraction array.
const doublereal * moleFractdivMMW () const
 Returns a read-only pointer to the start of the moleFraction/MW array.
Mean Properties

doublereal mean_X (const doublereal *const Q) const
 Evaluate the mole-fraction-weighted mean of Q:

\[ \sum_k X_k Q_k. \]

Array Q should contain pure-species molar property values.

doublereal mean_Y (const doublereal *const Q) const
 Evaluate the mass-fraction-weighted mean of Q:

\[ \sum_k Y_k Q_k \]

.

doublereal meanMolecularWeight () const
 The mean molecular weight.
doublereal sum_xlogx () const
 Evaluate $ \sum_k X_k \log X_k $.
doublereal sum_xlogQ (doublereal *const Q) const
 Evaluate $ \sum_k X_k \log Q_k $.
Thermodynamic Properties

Class State only stores enough thermodynamic data to specify the state.

In addition to composition information, it stores the temperature and mass density.

doublereal temperature () const
 Temperature (K).
virtual doublereal density () const
 Density (kg/m^3).
doublereal molarDensity () const
 Molar density (kmol/m^3).
virtual void setTemperature (const doublereal temp)
 Set the temperature (K).

Protected Member Functions

void init (const array_fp &mw)
void setMolecularWeight (const int k, const double mw)
 Set the molecular weight of a single species to a given value.

Protected Attributes

int m_formGC
 Format for the generalized concentrations 0 = C_k = X_k.
int m_mm
 m_mm = Number of distinct elements defined in species in this phase
doublereal m_tmin
 Maximum temperature that this phase can accurately describe the thermodynamics.
doublereal m_tmax
 Minimum temperature that this phase can accurately describe the thermodynamics.
doublereal m_Pref
 Value of the reference pressure for all species in this phase.
doublereal m_Pcurrent
 m_Pcurrent = The current pressure Since the density isn't a function of pressure, but only of the mole fractions, we need to independently specify the pressure.
array_fp m_speciesMolarVolume
 Species molar volume $ m^3 kmol^-1 $.
doublereal m_tlast
 Value of the temperature at which the thermodynamics functions for the reference state of the species were last evaluated.
array_fp m_h0_RT
 Vector containing the species reference enthalpies at T = m_tlast.
array_fp m_cp0_R
 Vector containing the species reference constant pressure heat capacities at T = m_tlast.
array_fp m_g0_RT
 Vector containing the species reference Gibbs functions at T = m_tlast.
array_fp m_s0_R
 Vector containing the species reference entropies at T = m_tlast.
array_fp m_expg0_RT
 Vector containing the species reference exp(-G/RT) functions at T = m_tlast.
array_fp m_pe
 Vector of potential energies for the species.
array_fp m_pp
 Temporary array used in equilibrium calculations.
SpeciesThermom_spthermo
 Pointer to the calculation manager for species reference-state thermodynamic properties.
std::vector< const XML_Node * > m_speciesData
 Vector of pointers to the species databases.
int m_index
 Index number of the phase.
doublereal m_phi
 Storred value of the electric potential for this phase.
vector_fp m_lambdaRRT
 Vector of element potentials.
bool m_hasElementPotentials
 Boolean indicating whether there is a valid set of saved element potentials for this phase.
bool m_chargeNeutralityNecessary
 Boolean indicating whether a charge neutrality condition is a necessity.
int m_ssConvention
 Contains the standard state convention.
std::vector< doublereal > xMol_Ref
 Reference Mole Fraction Composition.
int m_kk
 m_kk = Number of species in the phase.
int m_ndim
 m_ndim is the dimensionality of the phase.
vector_fp m_weight
 Vector of molecular weights of the species.
bool m_speciesFrozen
 Boolean indicating whether the number of species has been frozen.
Elementsm_Elements
std::vector< std::string > m_speciesNames
 Vector of the species names.
vector_fp m_speciesComp
 Atomic composition of the species.
vector_fp m_speciesCharge
 m_speciesCharge: Vector of species charges length = m_kk
vector_fp m_speciesSize
 m_speciesSize(): Vector of species sizes.

Private Member Functions

Utility Functions ------------------------------------------

void _updateThermo () const
 This function gets called for every call to functions in this class.
void initLengths ()
 This internal function adjusts the lengths of arrays.

Detailed Description

Class IdealSolidSolnPhase represents a condensed phase ideal solution compound.

The phase and the pure species phases which comprise the standard states of the species are assumed to have zero volume expansivity and zero isothermal compressibility. Each species does, however, have constant but distinct partial molar volumes equal to their pure species molar volumes. The class derives from class ThermoPhase, and overloads the virtual methods defined there with ones that use expressions appropriate for ideal solution mixtures. File name for the XML datafile containing information for this phase The generalized concentrations can have three different forms depending on the value of the member attribute m_formGC, which is supplied in the constructor and in the XML file.

m_formGC GeneralizedConc StandardConc
0 X_k 1.0
1 X_k / V_k 1.0 / V_k
2 X_k / V_N 1.0 / V_N

The value and form of the generalized concentration will affect reaction rate constants involving species in this phase.

Definition at line 69 of file IdealSolidSolnPhase.h.


Constructor & Destructor Documentation

IdealSolidSolnPhase ( int  formCG = 0  ) 

Constructor for IdealSolidSolnPhase.

The generalized concentrations can have three different forms depending on the value of the member attribute m_formGC, which is supplied in the constructor or read from the xml data file.

m_formGC GeneralizedConc StandardConc
0 X_k 1.0
1 X_k / V_k 1.0 / V_k
2 X_k / V_N 1.0 / V_N
Parameters:
formCG This parameter initializes the m_formGC variable. The default is a value of 0.

Definition at line 27 of file IdealSolidSolnPhase.cpp.

Referenced by IdealSolidSolnPhase::duplMyselfAsThermoPhase().

IdealSolidSolnPhase ( std::string  infile,
std::string  id = "",
int  formCG = 0 
)

Construct and initialize an IdealSolidSolnPhase ThermoPhase object directly from an asci input file.

This constructor will also fully initialize the object. The generalized concentrations can have three different forms depending on the value of the member attribute m_formGC, which is supplied in the constructor or read from the xml data file.

m_formGC GeneralizedConc StandardConc
0 X_k 1.0
1 X_k / V_k 1.0 / V_k
2 X_k / V_N 1.0 / V_N
Parameters:
infile File name for the XML datafile containing information for this phase
id The name of this phase. This is used to look up the phase in the XML datafile.
formCG This parameter initializes the m_formGC variable. The default is a value of 0.

Definition at line 43 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::constructPhaseFile().

IdealSolidSolnPhase ( XML_Node root,
std::string  id = "",
int  formCG = 0 
)

Construct and initialize an IdealSolidSolnPhase ThermoPhase object directly from an XML database.

The generalized concentrations can have three different forms depending on the value of the member attribute m_formGC, which is supplied in the constructor and/or read from the data file.

m_formGC GeneralizedConc StandardConc
0 X_k 1.0
1 X_k / V_k 1.0 / V_k
2 X_k / V_N 1.0 / V_N
Parameters:
root XML tree containing a description of the phase. The tree must be positioned at the XML element named phase with id, "id", on input to this routine.
id The name of this phase. This is used to look up the phase in the XML datafile.
formCG This parameter initializes the m_formGC variable. The default is a value of 0.

Definition at line 61 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::constructPhaseXML().

Copy Constructor

Definition at line 79 of file IdealSolidSolnPhase.cpp.

virtual ~IdealSolidSolnPhase (  )  [inline, virtual]

Destructor.

Definition at line 160 of file IdealSolidSolnPhase.h.


Member Function Documentation

doublereal _RT (  )  const [inline, inherited]
void _updateThermo (  )  const [private]
int activityConvention (  )  const [virtual, inherited]

This method returns the convention used in specification of the activities, of which there are currently two, molar- and molality-based conventions.

Currently, there are two activity conventions:

  • Molar-based activities Unit activity of species at either a hypothetical pure solution of the species or at a hypothetical pure ideal solution at infinite dilution cAC_CONVENTION_MOLAR 0
    • default
  • Molality-based acvtivities (unit activity of solutes at a hypothetical 1 molal solution referenced to infinite dilution at all pressures and temperatures). cAC_CONVENTION_MOLALITY 1

Reimplemented in MolalityVPSSTP.

Definition at line 150 of file ThermoPhase.cpp.

References Cantera::cAC_CONVENTION_MOLAR.

Referenced by vcs_MultiPhaseEquil::reportCSV().

void addElement ( const XML_Node e  )  [inherited]

Add an element from an XML specification.

Parameters:
e Reference to the XML_Node where the element is described.

Definition at line 138 of file Constituents.cpp.

References Elements::addElement(), and Constituents::m_Elements.

void addElement ( const std::string &  symbol,
doublereal  weight 
) [inherited]

Add an element.

Parameters:
symbol Atomic symbol std::string.
weight Atomic mass in amu.

Definition at line 132 of file Constituents.cpp.

References Elements::addElement(), and Constituents::m_Elements.

void addElementsFromXML ( const XML_Node phase  )  [inherited]

Add all elements referenced in an XML_Node tree.

Parameters:
phase Reference to the top XML_Node of a phase

Definition at line 169 of file Constituents.cpp.

References Elements::addElementsFromXML(), and Constituents::m_Elements.

void addUniqueElement ( const XML_Node e  )  [inherited]

Adde an element, checking for uniqueness.

The uniqueness is checked by comparing the string symbol. If not unique, nothing is done.

Parameters:
e Reference to the XML_Node where the element is described.

Definition at line 164 of file Constituents.cpp.

References Elements::addUniqueElement(), and Constituents::m_Elements.

void addUniqueElement ( const std::string &  symbol,
doublereal  weight,
int  atomicNumber = 0,
doublereal  entropy298 = ENTROPY298_UNKNOWN 
) [inherited]

Add an element, checking for uniqueness.

The uniqueness is checked by comparing the string symbol. If not unique, nothing is done.

Parameters:
symbol String symbol of the element
weight Atomic weight of the element (kg kmol-1).
atomicNumber Atomic number of the element (unitless)
entropy298 Entropy of the element at 298 K and 1 bar in its most stable form. The default is the value ENTROPY298_UNKNOWN, which is interpreted as an unknown, and if used will cause Cantera to throw an error.

Definition at line 157 of file Constituents.cpp.

References Elements::addUniqueElement(), and Constituents::m_Elements.

void addUniqueSpecies ( const std::string &  name,
const doublereal *  comp,
doublereal  charge = 0.0,
doublereal  size = 1.0 
) [inherited]

Add a species to the phase, checking for uniqueness of the name.

This routine checks for uniqueness of the string name. It only adds the species if it is unique.

Parameters:
name String name of the species
comp Double vector containing the elemental composition of the species.
charge Charge of the species. Defaults to zero.
size Size of the species (meters). Defaults to 1 meter.

Definition at line 357 of file Constituents.cpp.

References Constituents::m_Elements, Constituents::m_speciesCharge, Constituents::m_speciesComp, Constituents::m_speciesNames, Constituents::m_speciesSize, and Elements::nElements().

int atomicNumber ( int  m  )  const [inherited]

Atomic number of element m.

Parameters:
m Element index

Definition at line 117 of file Constituents.cpp.

References Elements::atomicNumber(), and Constituents::m_Elements.

Referenced by MultiPhase::addPhase().

doublereal atomicWeight ( int  m  )  const [inherited]

Atomic weight of element m.

Parameters:
m Element index

Definition at line 95 of file Constituents.cpp.

References Elements::atomicWeight(), and Constituents::m_Elements.

Referenced by WaterSSTP::initThermoXML().

const vector_fp & atomicWeights (  )  const [inherited]

Return a read-only reference to the vector of atomic weights.

Definition at line 109 of file Constituents.cpp.

References Elements::atomicWeights(), and Constituents::m_Elements.

void calcDensity (  ) 

Calculate the density of the mixture using the partial molar volumes and mole fractions as input.

The formula for this is

\[ \rho = \frac{\sum_k{X_k W_k}}{\sum_k{X_k V_k}} \]

where $X_k$ are the mole fractions, $W_k$ are the molecular weights, and $V_k$ are the pure species molar volumes.

Note, the basis behind this formula is that in an ideal solution the partial molar volumes are equal to the pure species molar volumes. We have additionally specified in this class that the pure species molar volumes are independent of temperature and pressure.

NOTE: This is a non-virtual function, which is not a member of the ThermoPhase base class.

The formula for this is

\[ \rho = \frac{\sum_k{X_k W_k}}{\sum_k{X_k V_k}} \]

where $ X_k $ are the mole fractions, $W_k$ are the molecular weights, and $V_k$ are the pure species molar volumes.

Note, the basis behind this formula is that in an ideal solution the partial molar volumes are equal to the pure species molar volumes. We have additionally specified that in this class that the pure species molar volumes are independent of temperature and pressure.

Definition at line 270 of file IdealSolidSolnPhase.cpp.

References Cantera::dot(), IdealSolidSolnPhase::m_speciesMolarVolume, State::moleFractdivMMW(), and IdealSolidSolnPhase::setDensity().

Referenced by IdealSolidSolnPhase::setConcentrations(), IdealSolidSolnPhase::setMassFractions(), IdealSolidSolnPhase::setMassFractions_NoNorm(), IdealSolidSolnPhase::setMoleFractions(), IdealSolidSolnPhase::setMoleFractions_NoNorm(), and IdealSolidSolnPhase::setPressure().

doublereal charge ( int  k  )  const [inherited]
doublereal chargeDensity (  )  const [inherited]

Charge density [C/m^3].

Definition at line 334 of file Phase.cpp.

References Constituents::charge(), Phase::moleFraction(), and Constituents::nSpecies().

bool chargeNeutralityNecessary (  )  const [inline, inherited]

Returns the chargeNeutralityNecessity boolean.

Some phases must have zero net charge in order for their thermodynamics functions to be valid. If this is so, then the value returned from this function is true. If this is not the case, then this is false. Now, ideal gases have this parameter set to false, while solution with molality-based activity coefficients have this parameter set to true.

Definition at line 2066 of file ThermoPhase.h.

References ThermoPhase::m_chargeNeutralityNecessary.

void clear (  )  [inherited]

Remove all elements and species.

doublereal concentration ( const int  k  )  const [inherited]

Concentration of species k.

If k is outside the valid range, an exception will be thrown.

Parameters:
k Index of species

Definition at line 134 of file State.cpp.

References State::m_dens, State::m_kk, State::m_rmolwts, and State::m_y.

void constructPhaseFile ( std::string  infile,
std::string  id = "" 
)

Initialization of an IdealSolidSolnPhase phase using an xml file.

This routine is a precursor to constructPhaseXML(XML_Node*) routine, which does most of the work.

Parameters:
infile XML file containing the description of the phase
id Optional parameter identifying the name of the phase. If none is given, the first XML phase element will be used.

Definition at line 1133 of file IdealSolidSolnPhase.cpp.

References XML_Node::build(), IdealSolidSolnPhase::constructPhaseXML(), XML_Node::copy(), Cantera::findInputFile(), Cantera::findXMLPhase(), and Phase::xml().

Referenced by IdealSolidSolnPhase::IdealSolidSolnPhase().

void constructPhaseXML ( XML_Node phaseNode,
std::string  id = "" 
)

Import and initialize an IdealSolidSolnPhase phase specification in an XML tree into the current object.

Here we read an XML description of the phase. We import descriptions of the elements that make up the species in a phase. We import information about the species, including their reference state thermodynamic polynomials. We then freeze the state of the species. This routine calls importPhase() to do most of its work. Then, importPhase() calls initThermoXML() to finish off the work.

Parameters:
phaseNode This object must be the phase node of a complete XML tree description of the phase, including all of the species data. In other words while "phase" must point to an XML phase object, it must have sibling nodes "speciesData" that describe the species in the phase.
id ID of the phase. If nonnull, a check is done to see if phaseNode is pointing to the phase with the correct id.

Definition at line 1059 of file IdealSolidSolnPhase.cpp.

References XML_Node::attrib(), XML_Node::child(), XML_Node::hasChild(), XML_Node::id(), Cantera::importPhase(), Cantera::lowercase(), IdealSolidSolnPhase::m_formGC, and Constituents::size().

Referenced by IdealSolidSolnPhase::constructPhaseFile(), and IdealSolidSolnPhase::IdealSolidSolnPhase().

doublereal cp_mass (  )  const [inline, inherited]
doublereal cp_mole (  )  const [virtual]

Molar heat capacity at constant pressure of the solution.

Units: J/kmol/K. For an ideal, constant partial molar volume solution mixture with pure species phases which exhibit zero volume expansivity:

\[ \hat c_p(T,P) = \sum_k X_k \hat c^0_{p,k}(T) . \]

The heat capacity is independent of pressure. The reference-state pure-species heat capacities $ \hat c^0_{p,k}(T) $ are computed by the species thermodynamic property manager.

See also:
SpeciesThermo

Reimplemented from ThermoPhase.

Definition at line 241 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::cp_R_ref(), DATA_PTR, Cantera::GasConstant, and State::mean_X().

Referenced by IdealSolidSolnPhase::cv_mole().

const array_fp& cp_R_ref (  )  const [inline]

Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature.

Real reason for its existence is that it also checks to see if a recalculation of the reference thermodynamics functions needs to be done.

Definition at line 887 of file IdealSolidSolnPhase.h.

References IdealSolidSolnPhase::_updateThermo(), and IdealSolidSolnPhase::m_cp0_R.

Referenced by IdealSolidSolnPhase::cp_mole(), and IdealSolidSolnPhase::getCp_R().

virtual doublereal critDensity (  )  const [inline, virtual, inherited]

Critical density (kg/m3).

Reimplemented in HMWSoln, IdealMolalSoln, PureFluidPhase, and WaterSSTP.

Definition at line 1791 of file ThermoPhase.h.

References ThermoPhase::err().

virtual doublereal critPressure (  )  const [inline, virtual, inherited]

Critical pressure (Pa).

Reimplemented in HMWSoln, IdealMolalSoln, PureFluidPhase, and WaterSSTP.

Definition at line 1786 of file ThermoPhase.h.

References ThermoPhase::err().

virtual doublereal critTemperature (  )  const [inline, virtual, inherited]

Critical temperature (K).

Reimplemented in HMWSoln, IdealMolalSoln, PureFluidPhase, and WaterSSTP.

Definition at line 1781 of file ThermoPhase.h.

References ThermoPhase::err().

doublereal cv_mass (  )  const [inline, inherited]
virtual doublereal cv_mole (  )  const [inline, virtual]

Molar heat capacity at constant volume of the solution.

Units: J/kmol/K. For an ideal, constant partial molar volume solution mixture with pure species phases which exhibit zero volume expansivity:

\[ \hat c_v(T,P) = \hat c_p(T,P) \]

The two heat capacities are equal.

Reimplemented from ThermoPhase.

Definition at line 259 of file IdealSolidSolnPhase.h.

References IdealSolidSolnPhase::cp_mole().

virtual doublereal density (  )  const [inline, virtual, inherited]
ThermoPhase * duplMyselfAsThermoPhase (  )  const [virtual]

Base Class Duplication Function -> given a pointer to ThermoPhase, this function can duplicate the object. (note has to be a separate function not the copy constructor, because it has to be a virtual function)

Reimplemented from ThermoPhase.

Definition at line 116 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::IdealSolidSolnPhase().

doublereal electricPotential (  )  const [inline, inherited]

Returns the electric potential of this phase (V).

Units are Volts (which are Joules/coulomb)

Reimplemented in IdealMolalSoln.

Definition at line 1003 of file ThermoPhase.h.

References ThermoPhase::m_phi.

Referenced by ThermoPhase::getElectrochemPotentials(), MolalityVPSSTP::getElectrochemPotentials(), ThermoPhase::report(), PureFluidPhase::report(), and MolalityVPSSTP::report().

int elementIndex ( std::string  name  )  const [inherited]

Index of element named 'name'.

The index is an integer assigned to each element in the order it was added, beginning with 0 for the first element.

Parameters:
name name of the element

If 'name' is not the name of an element in the set, then the value -1 is returned.

Definition at line 197 of file Constituents.cpp.

References Elements::elementIndex(), and Constituents::m_Elements.

Referenced by MultiPhase::init(), WaterSSTP::initThermoXML(), and PDSS_HKFT::LookupGe().

string elementName ( int  m  )  const [inherited]

Name of the element with index m.

This is a passthrough routine to the Element object.

Parameters:
m Element index.
Exceptions:
If m < 0 or m >= nElements(), the exception, ElementRangeError, is thrown.

Definition at line 209 of file Constituents.cpp.

References Elements::elementName(), and Constituents::m_Elements.

Referenced by MultiPhase::addPhase(), PDSS_HKFT::convertDGFormation(), and MolalityVPSSTP::findCLMIndex().

const vector< string > & elementNames (  )  const [inherited]

Return a read-only reference to the vector of element names.

Definition at line 229 of file Constituents.cpp.

References Elements::elementNames(), and Constituents::m_Elements.

bool elementsFrozen (  )  [inherited]

True if freezeElements has been called.

Definition at line 183 of file Constituents.cpp.

References Elements::elementsFrozen(), and Constituents::m_Elements.

doublereal enthalpy_mass (  )  const [inline, inherited]
doublereal enthalpy_mole (  )  const [virtual]

Molar enthalpy of the solution.

Units: J/kmol. For an ideal, constant partial molar volume solution mixture with pure species phases which exhibit zero volume expansivity and zero isothermal compressibility:

\[ \hat h(T,P) = \sum_k X_k \hat h^0_k(T) + (P - P_{ref}) (\sum_k X_k \hat V^0_k) \]

The reference-state pure-species enthalpies at the reference pressure Pref $ \hat h^0_k(T) $, are computed by the species thermodynamic property manager. They are polynomial functions of temperature.

See also:
SpeciesThermo

Reimplemented from ThermoPhase.

Definition at line 161 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::enthalpy_RT_ref(), Cantera::GasConstant, IdealSolidSolnPhase::m_Pref, State::mean_X(), State::molarDensity(), IdealSolidSolnPhase::pressure(), and State::temperature().

const array_fp & enthalpy_RT_ref (  )  const

Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature.

Real reason for its existence is that it also checks to see if a recalculation of the reference thermodynamics functions needs to be done.

Definition at line 991 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::_updateThermo(), and IdealSolidSolnPhase::m_h0_RT.

Referenced by IdealSolidSolnPhase::enthalpy_mole(), IdealSolidSolnPhase::getEnthalpy_RT(), IdealSolidSolnPhase::getIntEnergy_RT(), IdealSolidSolnPhase::getIntEnergy_RT_ref(), IdealSolidSolnPhase::getPartialMolarEnthalpies(), and IdealSolidSolnPhase::intEnergy_mole().

doublereal entropy_mass (  )  const [inline, inherited]
doublereal entropy_mole (  )  const [virtual]

Molar entropy of the solution.

Units: J/kmol/K. For an ideal, constant partial molar volume solution mixture with pure species phases which exhibit zero volume expansivity:

\[ \hat s(T, P, X_k) = \sum_k X_k \hat s^0_k(T) - \hat R \sum_k X_k log(X_k) \]

The reference-state pure-species entropies $ \hat s^0_k(T,p_{ref}) $ are computed by the species thermodynamic property manager. The pure species entropies are independent of pressure since the volume expansivities are equal to zero.

See also:
SpeciesThermo

Units: J/kmol/K. For an ideal, constant partial molar volume solution mixture with pure species phases which exhibit zero volume expansivity:

\[ \hat s(T, P, X_k) = \sum_k X_k \hat s^0_k(T) - \hat R \sum_k X_k log(X_k) \]

The reference-state pure-species entropies $ \hat s^0_k(T,p_{ref}) $ are computed by the species thermodynamic property manager. The pure species entropies are independent of temperature since the volume expansivities are equal to zero.

See also:
SpeciesThermo

Reimplemented from ThermoPhase.

Definition at line 203 of file IdealSolidSolnPhase.cpp.

References DATA_PTR, IdealSolidSolnPhase::entropy_R_ref(), Cantera::GasConstant, State::mean_X(), and State::sum_xlogx().

const array_fp & entropy_R_ref (  )  const

Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature.

Real reason for its existence is that it also checks to see if a recalculation of the reference thermodynamics functions needs to be done.

Definition at line 1017 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::_updateThermo(), and IdealSolidSolnPhase::m_s0_R.

Referenced by IdealSolidSolnPhase::entropy_mole(), IdealSolidSolnPhase::getEntropy_R(), and IdealSolidSolnPhase::getPartialMolarEntropies().

doublereal entropyElement298 ( int  m  )  const [inherited]

Entropy of the element in its standard state at 298 K and 1 bar.

Parameters:
m Element index

Definition at line 100 of file Constituents.cpp.

References Elements::entropyElement298(), and Constituents::m_Elements.

Referenced by PDSS_HKFT::LookupGe().

int eosType (  )  const [virtual]

Equation of state flag.

Returns a value depending upon the value of m_formGC, which is defined at instantiation.

Returns the value cIdealGas, defined in mix_defs.h.

Reimplemented from ThermoPhase.

Definition at line 125 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::m_formGC.

Referenced by IdealSolidSolnPhase::getUnitsStandardConc().

const array_fp & expGibbs_RT_ref (  )  const

Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature.

Real reason for its existence is that it also checks to see if a recalculation of the reference thermodynamics functions needs to be done.

Definition at line 1003 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::_updateThermo(), IdealSolidSolnPhase::m_expg0_RT, IdealSolidSolnPhase::m_g0_RT, and Phase::m_kk.

void freezeElements (  )  [inherited]

Prohibit addition of more elements, and prepare to add species.

Definition at line 176 of file Constituents.cpp.

References Elements::freezeElements(), and Constituents::m_Elements.

void freezeSpecies (  )  [virtual, inherited]

Finished adding species, prepare to use them for calculation of mixture properties.

Reimplemented from Constituents.

Definition at line 348 of file Phase.cpp.

References State::init(), Phase::m_data, Phase::m_kk, Constituents::molecularWeights(), and Constituents::nSpecies().

void getActivities ( doublereal *  a  )  const [virtual, inherited]

Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration.

Note, for molality based formulations, this returns the molality based activities.

We resolve this function at this level by calling on the activityConcentration function. However, derived classes may want to override this default implementation.

Parameters:
a Output vector of activities. Length: m_kk.

Reimplemented in DebyeHuckel, HMWSoln, IdealMolalSoln, MolalityVPSSTP, and SingleSpeciesTP.

Definition at line 162 of file ThermoPhase.cpp.

References ThermoPhase::getActivityConcentrations(), Constituents::nSpecies(), and ThermoPhase::standardConcentration().

Referenced by vcs_MultiPhaseEquil::reportCSV().

void getActivityCoefficients ( doublereal *  ac  )  const [virtual]

Get the array of species activity coefficients.

Parameters:
ac output vector of activity coefficients. Length: m_kk

Reimplemented from ThermoPhase.

Definition at line 598 of file IdealSolidSolnPhase.cpp.

References Phase::m_kk.

void getActivityConcentrations ( doublereal *  c  )  const [virtual]

This method returns the array of generalized concentrations.

The generalized concentrations are used in the evaluation of the rates of progress for reactions involving species in this phase. The generalized concentration divided by the standard concentration is also equal to the activity of species.

For this implentation the activity is defined to be the mole fraction of the species. The generalized concentration is defined to be equal to the mole fraction divided by the partial molar volume. The generalized concentrations for species in this phase therefore have units of kmol m-3. Rate constants must reflect this fact.

On a general note, the following must be true. For an ideal solution, the generalized concentration must consist of the mole fraction multiplied by a constant. The constant may be fairly arbitrarily chosen, with differences adsorbed into the reaction rate expression. 1/V_N, 1/V_k, or 1 are equally good, as long as the standard concentration is adjusted accordingly. However, it must be a constant (and not the concentration, btw, which is a function of the mole fractions) in order for the ideal solution properties to hold at the same time having the standard concentration to be independent of the mole fractions.

In this implementation the form of the generalized concentrations depend upon the member attribute, m_formGC:

m_formGC GeneralizedConc StandardConc
0 X_k 1.0
1 X_k / V_k 1.0 / V_k
2 X_k / V_N 1.0 / V_N

HKM Note: We have absorbed the pressure dependence of the pures species state into the thermodynamics functions. Therefore the standard state on which the activities are based depend on both temperature and pressure. If we hadn't, it would have appeared in this function in a very awkwards exp[] format.

Parameters:
c Pointer to array of doubles of length m_kk, which on exit will contain the generalized concentrations.

Reimplemented from ThermoPhase.

Definition at line 452 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::m_formGC, Phase::m_kk, IdealSolidSolnPhase::m_speciesMolarVolume, State::meanMolecularWeight(), and State::moleFractdivMMW().

void getAtoms ( int  k,
double *  atomArray 
) const [inherited]

Get a vector containing the atomic composition of species k.

Parameters:
k species index
atomArray vector containing the atomic number in the species. Length: m_mm

Definition at line 480 of file Constituents.cpp.

References Constituents::m_Elements, Constituents::m_speciesComp, and Elements::nElements().

void getChemPotentials ( doublereal *  mu  )  const [virtual]

Get the species chemical potentials.

Units: J/kmol.

This function returns a vector of chemical potentials of the species in solution.

\[ \mu_k = \mu^{ref}_k(T) + V_k * (p - p_o) + R T ln(X_k) \]

or another way to phrase this is

\[ \mu_k = \mu^o_k(T,p) + R T ln(X_k) \]

where $ \mu^o_k(T,p) = \mu^{ref}_k(T) + V_k * (p - p_o)$

Parameters:
mu Output vector of chemical potentials.

Reimplemented from ThermoPhase.

Definition at line 621 of file IdealSolidSolnPhase.cpp.

References Cantera::fmaxx(), Cantera::GasConstant, IdealSolidSolnPhase::gibbs_RT_ref(), Phase::m_kk, IdealSolidSolnPhase::m_Pcurrent, IdealSolidSolnPhase::m_Pref, IdealSolidSolnPhase::m_speciesMolarVolume, Phase::moleFraction(), Cantera::SmallNumber, and State::temperature().

void getChemPotentials_RT ( doublereal *  mu  )  const [virtual]

Get the array of non-dimensional species solution chemical potentials at the current T and P $\mu_k / \hat R T $.

\[ \mu^0_k(T,P) = \mu^{ref}_k(T) + (P - P_{ref}) * V_k + RT ln(X_k) \]

where $V_k$ is the molar volume of pure species k. $ \mu^{ref}_k(T)$ is the chemical potential of pure species k at the reference pressure, $P_{ref}$.

Parameters:
mu Output vector of dimensionless chemical potentials. Length = m_kk.

Reimplemented from ThermoPhase.

Definition at line 651 of file IdealSolidSolnPhase.cpp.

References Cantera::fmaxx(), Cantera::GasConstant, IdealSolidSolnPhase::gibbs_RT_ref(), Phase::m_kk, IdealSolidSolnPhase::m_Pcurrent, IdealSolidSolnPhase::m_Pref, IdealSolidSolnPhase::m_speciesMolarVolume, Phase::moleFraction(), Cantera::SmallNumber, and State::temperature().

void getConcentrations ( doublereal *const   c  )  const [inherited]

Get the species concentrations (kmol/m^3).

Parameters:
c On return, c contains the concentrations for all species. Array c must have a length greater than or equal to the number of species.

Definition at line 219 of file State.cpp.

References State::m_dens, State::m_ym, and Cantera::scale().

Referenced by ConstDensityThermo::getActivityCoefficients(), SurfPhase::getActivityConcentrations(), IdealSolnGasVPSS::getActivityConcentrations(), IdealGasPhase::getActivityConcentrations(), and SurfPhase::getCoverages().

void getCp_R ( doublereal *  cpr  )  const [virtual]

Get the nondimensional heat capacity at constant pressure function for the species standard states at the current T and P of the solution.

\[ Cp^0_k(T,P) = Cp^{ref}_k(T) \]

where $V_k$ is the molar volume of pure species k. $ Cp^{ref}_k(T)$ is the constant pressure heat capacity of species k at the reference pressure, $p_{ref}$.

Parameters:
cpr Vector of length m_kk, which on return cpr[k] will contain the nondimensional constant pressure heat capacity for species k.

Reimplemented from ThermoPhase.

Definition at line 883 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::cp_R_ref().

Referenced by IdealSolidSolnPhase::getPartialMolarCp().

void getCp_R_ref ( doublereal *  cprt  )  const [virtual]

Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for the species.

Parameters:
cprt Output vector containing reference nondimensional heat capacities. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 977 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::_updateThermo(), IdealSolidSolnPhase::m_cp0_R, and Phase::m_kk.

virtual void getdlnActCoeffdlnC ( doublereal *  dlnActCoeffdlnC  )  const [inline, virtual, inherited]

Get the array of log concentration-like derivatives of the log activity coefficients.

This function is a virtual method. For ideal mixtures (unity activity coefficients), this can return zero. Implementations should take the derivative of the logarithm of the activity coefficient with respect to the logarithm of the concentration-like variable (i.e. mole fraction, molality, etc.) that represents the standard state. This quantity is to be used in conjunction with derivatives of that concentration-like variable when the derivative of the chemical potential is taken.

units = dimensionless

Parameters:
dlnActCoeffdlnC Output vector of derivatives of the log Activity Coefficients. length = m_kk

Reimplemented in VPStandardStateTP.

Definition at line 904 of file ThermoPhase.h.

References ThermoPhase::err().

void getElectrochemPotentials ( doublereal *  mu  )  const [inline, inherited]

Get the species electrochemical potentials.

These are partial molar quantities. This method adds a term $ F z_k \phi_p $ to each chemical potential. The electrochemical potential of species k in a phase p, $ \zeta_k $, is related to the chemical potential via the following equation,

\[ \zeta_{k}(T,P) = \mu_{k}(T,P) + F z_k \phi_p \]

Parameters:
mu Output vector of species electrochemical potentials. Length: m_kk. Units: J/kmol

Reimplemented in MolalityVPSSTP, and SingleSpeciesTP.

Definition at line 1210 of file ThermoPhase.h.

References Constituents::charge(), ThermoPhase::electricPotential(), ThermoPhase::getChemPotentials(), and Phase::m_kk.

bool getElementPotentials ( doublereal *  lambda  )  const [inherited]

Returns the element potentials storred in the ThermoPhase object.

Returns the storred element potentials. The element potentials are retrieved from their storred dimensionless forms by multiplying by RT.

Parameters:
lambda Output vector containing the element potentials. Length = nElements. Units are Joules/kmol.
Returns:
bool indicating whether thare are any valid storred element potentials. The calling routine should check this bool. In the case that there aren't any, lambda is not touched.

Definition at line 1015 of file ThermoPhase.cpp.

References Cantera::GasConstant, ThermoPhase::m_hasElementPotentials, ThermoPhase::m_lambdaRRT, Constituents::nElements(), and State::temperature().

void getEnthalpy_RT ( doublereal *  hrt  )  const [virtual]

Get the array of nondimensional Enthalpy functions for the standard state species at the current T and P of the solution.

We assume an incompressible constant partial molar volume here:

\[ h^0_k(T,P) = h^{ref}_k(T) + (P - P_{ref}) * V_k \]

where $V_k$ is the molar volume of pure species k. $ h^{ref}_k(T)$ is the enthalpy of the pure species k at the reference pressure, $P_{ref}$.

Parameters:
hrt Vector of length m_kk, which on return hrt[k] will contain the nondimensional standard state enthalpy of species k.

Reimplemented from ThermoPhase.

Definition at line 821 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::enthalpy_RT_ref(), Cantera::GasConstant, Phase::m_kk, IdealSolidSolnPhase::m_Pcurrent, IdealSolidSolnPhase::m_Pref, IdealSolidSolnPhase::m_speciesMolarVolume, and State::temperature().

void getEnthalpy_RT_ref ( doublereal *  hrt  )  const [virtual]

Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters:
hrt Output vector containing reference nondimensional enthalpies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 910 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::_updateThermo(), IdealSolidSolnPhase::m_h0_RT, and Phase::m_kk.

void getEntropy_R ( doublereal *  sr  )  const [virtual]

Get the nondimensional Entropies for the species standard states at the current T and P of the solution.

Note, this is equal to the reference state entropies due to the zero volume expansivity: i.e., (dS/dP)_T = (dV/dT)_P = 0.0

Parameters:
sr Vector of length m_kk, which on return sr[k] will contain the nondimensional standard state entropy for species k.

Note, this is equal to the reference state entropies due to the zero volume expansivity: i.e., (dS/dp)_T = (dV/dT)_P = 0.0

Parameters:
sr Vector of length m_kk, which on return sr[k] will contain the nondimensional standard state entropy of species k.

Reimplemented from ThermoPhase.

Definition at line 842 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::entropy_R_ref().

void getEntropy_R_ref ( doublereal *  er  )  const [virtual]

Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters:
er Output vector containing reference nondimensional entropies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 964 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::_updateThermo(), Phase::m_kk, and IdealSolidSolnPhase::m_s0_R.

void getGibbs_ref ( doublereal *  g  )  const [virtual]

Returns the vector of the gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species.

units = J/kmol

Parameters:
g Output vector containing reference Gibbs free energies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 936 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::_updateThermo(), Cantera::GasConstant, IdealSolidSolnPhase::m_g0_RT, Phase::m_kk, and State::temperature().

void getGibbs_RT ( doublereal *  grt  )  const [virtual]

Get the nondimensional gibbs function for the species standard states at the current T and P of the solution.

\[ \mu^0_k(T,P) = \mu^{ref}_k(T) + (P - P_{ref}) * V_k \]

where $V_k$ is the molar volume of pure species k. $ \mu^{ref}_k(T)$ is the chemical potential of pure species k at the reference pressure, $P_{ref}$.

Parameters:
grt Vector of length m_kk, which on return sr[k] will contain the nondimensional standard state gibbs function for species k.

Reimplemented from ThermoPhase.

Definition at line 795 of file IdealSolidSolnPhase.cpp.

References ThermoPhase::_RT(), DATA_PTR, IdealSolidSolnPhase::gibbs_RT_ref(), Phase::m_kk, IdealSolidSolnPhase::m_Pcurrent, IdealSolidSolnPhase::m_Pref, and IdealSolidSolnPhase::m_speciesMolarVolume.

void getGibbs_RT_ref ( doublereal *  grt  )  const [virtual]

Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters:
grt Output vector containing reference nondimensional Gibbs free energies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 923 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::_updateThermo(), IdealSolidSolnPhase::m_g0_RT, and Phase::m_kk.

void getIntEnergy_RT ( doublereal *  urt  )  const [virtual]

Returns the vector of nondimensional internal Energies of the standard state at the current temperature and pressure of the solution for each species.

Parameters:
urt Output vector of standard state nondimensional internal energies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 859 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::enthalpy_RT_ref(), Cantera::GasConstant, Phase::m_kk, IdealSolidSolnPhase::m_Pref, IdealSolidSolnPhase::m_speciesMolarVolume, and State::temperature().

void getIntEnergy_RT_ref ( doublereal *  urt  )  const [virtual]

Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species.

Parameters:
urt Output vector containing reference nondimensional internal energies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 950 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::enthalpy_RT_ref(), Cantera::GasConstant, Phase::m_kk, IdealSolidSolnPhase::m_Pref, IdealSolidSolnPhase::m_speciesMolarVolume, and State::temperature().

void getMassFractions ( doublereal *const   y  )  const [inherited]

Get the species mass fractions.

Parameters:
y On return, y contains the mass fractions. Array y must have a length greater than or equal to the number of species.
y Output vector of mass fractions. Length is m_kk.

Definition at line 235 of file State.cpp.

References State::m_y.

Referenced by ThermoPhase::report(), PureFluidPhase::report(), and Phase::saveState().

void getMolecularWeights ( doublereal *  weights  )  const [inherited]

Copy the vector of molecular weights into array weights.

Parameters:
weights Output array of molecular weights (kg/kmol)

Definition at line 289 of file Phase.cpp.

References Phase::molecularWeights().

void getMolecularWeights ( int  iwt,
doublereal *  weights 
) const [inherited]

Copy the vector of molecular weights into array weights.

Parameters:
iwt Unused.
weights Output array of molecular weights (kg/kmol)
Deprecated:

Definition at line 281 of file Phase.cpp.

References Phase::molecularWeights().

void getMolecularWeights ( vector_fp &  weights  )  const [inherited]

Copy the vector of molecular weights into vector weights.

Parameters:
weights Output vector of molecular weights (kg/kmol)

Definition at line 271 of file Phase.cpp.

References Phase::molecularWeights().

void getMoleFractions ( doublereal *const   x  )  const [inherited]
void getMoleFractionsByName ( compositionMap x  )  const [inherited]

Get the mole fractions by name.

Parameters:
x Output composition map containing the species mole fractions.

Definition at line 306 of file Phase.cpp.

References Phase::moleFraction(), Constituents::nSpecies(), and Constituents::speciesName().

virtual void getParameters ( int &  n,
doublereal *const   c 
) const [inline, virtual, inherited]

Get the equation of state parameters in a vector.

For internal use only.

The number and meaning of these depends on the subclass.

Parameters:
n number of parameters
c array of n coefficients

Reimplemented in ConstDensityThermo, DebyeHuckel, HMWSoln, IdealMolalSoln, LatticePhase, MetalSHEelectrons, MineralEQ3, SingleSpeciesTP, and StoichSubstanceSSTP.

Definition at line 2020 of file ThermoPhase.h.

void getPartialMolarCp ( doublereal *  cpbar  )  const [virtual]

Returns an array of partial molar Heat Capacities at constant pressure of the species in the solution.

Units: J/kmol/K. For this phase, the partial molar heat capacities are equal to the standard state heat capacities.

Parameters:
cpbar Output vector of partial heat capacities. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 726 of file IdealSolidSolnPhase.cpp.

References Cantera::GasConstant, IdealSolidSolnPhase::getCp_R(), and Phase::m_kk.

void getPartialMolarEnthalpies ( doublereal *  hbar  )  const [virtual]

Returns an array of partial molar enthalpies for the species in the mixture.

Units (J/kmol) For this phase, the partial molar enthalpies are equal to the pure species enthalpies

\[ \bar h_k(T,P) = \hat h^{ref}_k(T) + (P - P_{ref}) \hat V^0_k \]

The reference-state pure-species enthalpies, $ \hat h^{ref}_k(T) $, at the reference pressure,$ P_{ref} $, are computed by the species thermodynamic property manager. They are polynomial functions of temperature.

See also:
SpeciesThermo
Parameters:
hbar Output vector containing partial molar enthalpies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 683 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::enthalpy_RT_ref(), Cantera::GasConstant, Cantera::scale(), and State::temperature().

void getPartialMolarEntropies ( doublereal *  sbar  )  const [virtual]

Returns an array of partial molar entropies of the species in the solution.

Units: J/kmol/K. For this phase, the partial molar entropies are equal to the pure species entropies plus the ideal solution contribution.

\[ \bar s_k(T,P) = \hat s^0_k(T) - R log(X_k) \]

The reference-state pure-species entropies,$ \hat s^{ref}_k(T) $, at the reference pressure, $ P_{ref} $, are computed by the species thermodynamic property manager. They are polynomial functions of temperature.

See also:
SpeciesThermo
Parameters:
sbar Output vector containing partial molar entropies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 707 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::entropy_R_ref(), Cantera::fmaxx(), Cantera::GasConstant, Phase::m_kk, Phase::moleFraction(), and Cantera::SmallNumber.

virtual void getPartialMolarIntEnergies ( doublereal *  ubar  )  const [inline, virtual, inherited]

Return an array of partial molar internal energies for the species in the mixture.

Units: J/kmol.

Parameters:
ubar Output vector of speciar partial molar internal energies. Length = m_kk. units are J/kmol.

Reimplemented in IdealGasPhase, IdealSolnGasVPSS, and SingleSpeciesTP.

Definition at line 1244 of file ThermoPhase.h.

References ThermoPhase::err().

void getPartialMolarVolumes ( doublereal *  vbar  )  const [virtual]

returns an array of partial molar volumes of the species in the solution.

Units: m^3 kmol-1.

For this solution, thepartial molar volumes are equal to the constant species molar volumes.

Parameters:
vbar Output vector of partial molar volumes. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 744 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::getStandardVolumes().

void getPureGibbs ( doublereal *  gpure  )  const [virtual]

Get the Gibbs functions for the pure species at the current T and P of the solution.

We assume an incompressible constant partial molar volume here:

\[ \mu^0_k(T,P) = \mu^{ref}_k(T) + (P - P_{ref}) * V_k \]

where $V_k$ is the molar volume of pure species k. $ \mu^{ref}_k(T)$ is the chemical potential of pure species k at the reference pressure, $P_{ref}$.

Parameters:
gpure Output vector of Gibbs functions for species Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 769 of file IdealSolidSolnPhase.cpp.

References ThermoPhase::_RT(), DATA_PTR, IdealSolidSolnPhase::gibbs_RT_ref(), Phase::m_kk, IdealSolidSolnPhase::m_Pcurrent, IdealSolidSolnPhase::m_Pref, and IdealSolidSolnPhase::m_speciesMolarVolume.

Referenced by IdealSolidSolnPhase::getStandardChemPotentials().

void getReferenceComposition ( doublereal *const   x  )  const [virtual, inherited]

Gets the reference composition.

The reference mole fraction is a safe mole fraction.

Parameters:
x Mole fraction vector containing the reference composition.

Definition at line 911 of file ThermoPhase.cpp.

References Phase::m_kk, and ThermoPhase::xMol_Ref.

void getSpeciesMolarVolumes ( doublereal *  smv  )  const

Fill in a return vector containing the species molar volumes.

units - $ m^3 kmol^-1 $

Parameters:
smv output vector containing species molar volumes. Length: m_kk.

Definition at line 1346 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::m_speciesMolarVolume.

virtual void getStandardChemPotentials ( doublereal *  mu0  )  const [inline, virtual]

Get the standard state chemical potentials of the species.

This is the array of chemical potentials at unit activity $ \mu^0_k(T,P) $. We define these here as the chemical potentials of the pure species at the temperature and pressure of the solution. This function is used in the evaluation of the equilibrium constant Kc. Therefore, Kc will also depend on T and P. This is the norm for liquid and solid systems.

units = J / kmol

Parameters:
mu0 Output vector of standard state chemical potentials. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 663 of file IdealSolidSolnPhase.h.

References IdealSolidSolnPhase::getPureGibbs().

void getStandardVolumes ( doublereal *  vol  )  const [virtual]

Get the molar volumes of each species in their standard states at the current T and P of the solution.

units = m^3 / kmol

Parameters:
vol Output vector of standard state volumes. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 894 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::m_speciesMolarVolume.

Referenced by IdealSolidSolnPhase::getPartialMolarVolumes().

virtual void getStandardVolumes_ref ( doublereal *  vol  )  const [inline, virtual, inherited]

Get the molar volumes of the species reference states at the current T and P_ref of the solution.

units = m^3 / kmol

Parameters:
vol Output vector containing the standard state volumes. Length: m_kk.

Reimplemented in IdealGasPhase, VPStandardStateTP, and WaterSSTP.

Definition at line 1449 of file ThermoPhase.h.

References ThermoPhase::err().

void getUnitsStandardConc ( double *  uA,
int  k = 0,
int  sizeUA = 6 
) const [virtual]

Returns the units of the standard and general concentrations Note they have the same units, as their divisor is defined to be equal to the activity of the kth species in the solution, which is unitless.

This routine is used in print out applications where the units are needed. Usually, MKS units are assumed throughout the program and in the XML input files.

Parameters:
uA Output vector containing the units uA[0] = kmol units - default = 1 uA[1] = m units - default = -nDim(), the number of spatial dimensions in the Phase class. uA[2] = kg units - default = 0; uA[3] = Pa(pressure) units - default = 0; uA[4] = Temperature units - default = 0; uA[5] = time units - default = 0
k species index. Defaults to 0.
sizeUA output int containing the size of the vector. Currently, this is equal to 6.

For EOS types other than cIdealSolidSolnPhase0, the default kmol/m3 holds for standard concentration units. For cIdealSolidSolnPhase0 type, the standard concentrtion is unitless.

Reimplemented from ThermoPhase.

Definition at line 575 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::eosType(), and Phase::nDim().

doublereal gibbs_mass (  )  const [inline, inherited]

Specific Gibbs function.

Units: J/kg.

Definition at line 1503 of file ThermoPhase.h.

References ThermoPhase::gibbs_mole(), and State::meanMolecularWeight().

Referenced by ThermoPhase::report(), PureFluidPhase::report(), and MolalityVPSSTP::report().

doublereal gibbs_mole (  )  const [virtual]

Molar gibbs free energy of the solution.

Units: J/kmol. For an ideal, constant partial molar volume solution mixture with pure species phases which exhibit zero volume expansivity:

\[ \hat g(T, P) = \sum_k X_k \hat g^0_k(T,P) + \hat R T \sum_k X_k log(X_k) \]

The reference-state pure-species gibbs free energies $ \hat g^0_k(T) $ are computed by the species thermodynamic property manager, while the standard state gibbs free energies $ \hat g^0_k(T,P) $ are computed by the member function, gibbs_RT().

See also:
SpeciesThermo

Reimplemented from ThermoPhase.

Definition at line 221 of file IdealSolidSolnPhase.cpp.

References DATA_PTR, Cantera::GasConstant, IdealSolidSolnPhase::gibbs_RT_ref(), State::mean_X(), State::sum_xlogx(), and State::temperature().

const array_fp& gibbs_RT_ref (  )  const [inline]

Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature.

Real reason for its existence is that it also checks to see if a recalculation of the reference thermodynamics functions needs to be done.

Definition at line 857 of file IdealSolidSolnPhase.h.

References IdealSolidSolnPhase::_updateThermo(), and IdealSolidSolnPhase::m_g0_RT.

Referenced by IdealSolidSolnPhase::getChemPotentials(), IdealSolidSolnPhase::getChemPotentials_RT(), IdealSolidSolnPhase::getGibbs_RT(), IdealSolidSolnPhase::getPureGibbs(), IdealSolidSolnPhase::gibbs_mole(), and IdealSolidSolnPhase::setToEquilState().

doublereal Hf298SS ( const int  k  )  const [inline, inherited]

Report the 298 K Heat of Formation of the standard state of one species (J kmol-1).

The 298K Heat of Formation is defined as the enthalpy change to create the standard state of the species from its constituent elements in their standard states at 298 K and 1 bar.

Parameters:
k species index
Returns:
Returns the current value of the Heat of Formation at 298K and 1 bar

Definition at line 816 of file ThermoPhase.h.

References ThermoPhase::err().

std::string id (  )  const [inherited]

Return the string id for the phase.

Returns the id of the phase. The ID of the phase is set to the string name of the phase within the XML file Generally, it refers to the individual model name that denotes the species, the thermo, and the reaction rate info.

Definition at line 116 of file Phase.cpp.

References Phase::m_id.

Referenced by Kinetics::kineticsSpeciesIndex(), MultiPhase::phaseIndex(), and MultiPhase::phaseName().

int index (  )  const [inline, inherited]

For internal use only.

Index number. This method can be used to identify the location of a phase object in a list, and is used by the interface library (clib) routines for this purpose.

Reimplemented from Phase.

Definition at line 1985 of file ThermoPhase.h.

References ThermoPhase::m_index.

void init ( const array_fp &  mw  )  [protected, inherited]

For internal use only.

Initialize. Make a local copy of the vector of molecular weights, and resize the composition arrays to the appropriate size. The only information an instance of State has about the species is their molecular weights.

Parameters:
mw Vector of molecular weights of the species.

Definition at line 244 of file State.cpp.

References Cantera::int2str(), State::m_kk, State::m_mmw, State::m_molwts, State::m_rmolwts, State::m_y, State::m_ym, and Cantera::Tiny.

Referenced by Phase::freezeSpecies().

void initLengths (  )  [private]
void initThermo (  )  [virtual]

Initialization of an IdealSolidSolnPhase phase: Note this function is pretty much useless because it doesn't get the xml tree passed to it.

Suggest a change.

Reimplemented from ThermoPhase.

Definition at line 1030 of file IdealSolidSolnPhase.cpp.

void initThermoFile ( std::string  inputFile,
std::string  id 
) [virtual, inherited]

For internal use only.

Initialization of a ThermoPhase object using an ctml file.

This routine is a precursor to initThermoXML(XML_Node*) routine, which does most of the work. Here we read extra information about the XML description of a phase. Regular information about elements and species and their reference state thermodynamic information have already been read at this point. For example, we do not need to call this function for ideal gas equations of state.

Parameters:
inputFile XML file containing the description of the phase
id Optional parameter identifying the name of the phase. If none is given, the first XML phase element encountered will be used.

Definition at line 830 of file ThermoPhase.cpp.

References XML_Node::build(), XML_Node::copy(), Cantera::findInputFile(), Cantera::findXMLPhase(), ThermoPhase::initThermoXML(), and Phase::xml().

void initThermoXML ( XML_Node phaseNode,
std::string  id 
) [virtual]

For internal use only.

Import and initialize a ThermoPhase object using an XML tree. Here we read extra information about the XML description of a phase. Regular information about elements and species and their reference state thermodynamic information have already been read at this point. For example, we do not need to call this function for ideal gas equations of state. This function is called from importPhase() after the elements and the species are initialized with default ideal solution level data.

Parameters:
phaseNode This object must be the phase node of a complete XML tree description of the phase, including all of the species data. In other words while "phase" must point to an XML phase object, it must have sibling nodes "speciesData" that describe the species in the phase.
id ID of the phase. If nonnull, a check is done to see if phaseNode is pointing to the phase with the correct id.

Reimplemented from ThermoPhase.

Definition at line 1189 of file IdealSolidSolnPhase.cpp.

References XML_Node::attrib(), XML_Node::child(), XML_Node::findByAttr(), XML_Node::findByName(), Cantera::get_XML_NameID(), ctml::getFloat(), XML_Node::hasChild(), IdealSolidSolnPhase::initLengths(), Cantera::lowercase(), IdealSolidSolnPhase::m_formGC, Phase::m_kk, IdealSolidSolnPhase::m_speciesMolarVolume, XML_Node::root(), and Constituents::speciesNames().

doublereal intEnergy_mass (  )  const [inline, inherited]
doublereal intEnergy_mole (  )  const [virtual]

Molar internal energy of the solution.

Units: J/kmol. For an ideal, constant partial molar volume solution mixture with pure species phases which exhibit zero volume expansivity and zero isothermal compressibility:

\[ \hat u(T,X) = \hat h(T,P,X) - p \hat V = \sum_k X_k \hat h^0_k(T) - P_{ref} (\sum_k{X_k \hat V^0_k}) \]

and is a function only of temperature. The reference-state pure-species enthalpies $ \hat h^0_k(T) $ are computed by the species thermodynamic property manager.

See also:
SpeciesThermo

J/kmol. For an ideal, constant partial molar volume solution mixture with pure species phases which exhibit zero volume expansivity and zero isothermal compressibility:

\[ \hat u(T) = \hat h(T,P) - p \hat V = \sum_k X_k \hat h^0_k(T) - P_{ref} (\sum_k X_k \hat V^0_k) \]

and is a function only of temperature. The reference-state pure-species enthalpies $ \hat h^0_k(T) $ are computed by the species thermodynamic property manager.

See also:
SpeciesThermo

Reimplemented from ThermoPhase.

Definition at line 182 of file IdealSolidSolnPhase.cpp.

References DATA_PTR, IdealSolidSolnPhase::enthalpy_RT_ref(), Cantera::GasConstant, IdealSolidSolnPhase::m_Pref, State::mean_X(), State::molarDensity(), and State::temperature().

virtual doublereal isothermalCompressibility (  )  const [inline, virtual, inherited]

Returns the isothermal compressibility. Units: 1/Pa.

The isothermal compressibility is defined as

\[ \kappa_T = -\frac{1}{v}\left(\frac{\partial v}{\partial P}\right)_T \]

or

\[ \kappa_T = \frac{1}{\rho}\left(\frac{\partial \rho}{\partial P}\right)_T \]

Reimplemented in DebyeHuckel, HMWSoln, IdealGasPhase, IdealMolalSoln, IdealSolnGasVPSS, MetalSHEelectrons, MineralEQ3, PureFluidPhase, StoichSubstanceSSTP, and WaterSSTP.

Definition at line 955 of file ThermoPhase.h.

References ThermoPhase::err().

Referenced by SingleSpeciesTP::cv_mole().

doublereal logStandardConc ( int  k  )  const [virtual]

Returns the log of the standard concentration of the kth species.

Parameters:
k Species number: this is a require parameter, a change from the ThermoPhase base class, where it was an optional parameter.

Reimplemented from ThermoPhase.

Definition at line 528 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::_updateThermo(), IdealSolidSolnPhase::m_formGC, Phase::m_kk, and IdealSolidSolnPhase::m_speciesMolarVolume.

doublereal massFraction ( std::string  name  )  const [inherited]

Return the mass fraction of a single species.

Parameters:
name String name of the species
Returns:
Mass Fraction of the species

Definition at line 328 of file Phase.cpp.

References State::massFractions(), and Constituents::speciesIndex().

doublereal massFraction ( int  k  )  const [inherited]

Return the mass fraction of a single species.

Parameters:
k String name of the species
Returns:
Mass Fraction of the species

Reimplemented from State.

Definition at line 324 of file Phase.cpp.

const doublereal* massFractions (  )  const [inline, inherited]

Returns a read-only pointer to the start of the massFraction array.

The pointer returned is readonly

Returns:
returns a pointer to a vector of doubles of length m_kk.

Definition at line 242 of file State.h.

References State::m_y.

Referenced by Phase::massFraction().

doublereal maxTemp ( int  k = -1  )  const [inline, inherited]

Maximum temperature for which the thermodynamic data for the species are valid.

If no argument is supplied, the value returned will be the highest temperature at which the data for all species are valid. Otherwise, the value will be only for species k. This function is a wrapper that calls the species thermo maxTemp function.

Parameters:
k index of the species. Default is -1, which will return the min of the max value over all species.

Definition at line 845 of file ThermoPhase.h.

References ThermoPhase::m_spthermo, and SpeciesThermo::maxTemp().

Referenced by MultiPhase::addPhase(), ThermoPhase::setState_HPorUV(), and ThermoPhase::setState_SPorSV().

doublereal mean_X ( const doublereal *const   Q  )  const [inherited]
doublereal mean_Y ( const doublereal *const   Q  )  const [inherited]

Evaluate the mass-fraction-weighted mean of Q:

\[ \sum_k Y_k Q_k \]

.

Parameters:
Q Array Q contains a vector of species property values in mass units.
Returns:
Return value containing the mass-fraction-weighted mean of Q.

Definition at line 227 of file State.cpp.

References Cantera::dot(), and State::m_y.

doublereal meanMolecularWeight (  )  const [inline, inherited]
doublereal minTemp ( int  k = -1  )  const [inline, inherited]

Minimum temperature for which the thermodynamic data for the species or phase are valid.

If no argument is supplied, the value returned will be the lowest temperature at which the data for all species are valid. Otherwise, the value will be only for species k. This function is a wrapper that calls the species thermo minTemp function.

Parameters:
k index of the species. Default is -1, which will return the max of the min value over all species.

Definition at line 776 of file ThermoPhase.h.

References ThermoPhase::m_spthermo, and SpeciesThermo::minTemp().

Referenced by MultiPhase::addPhase(), ThermoPhase::setState_HPorUV(), and ThermoPhase::setState_SPorSV().

virtual void modifyOneHf298SS ( const int  k,
const doublereal  Hf298New 
) [inline, virtual, inherited]

Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1).

The 298K heat of formation is defined as the enthalpy change to create the standard state of the species from its constituent elements in their standard states at 298 K and 1 bar.

Parameters:
k Species k
Hf298New Specify the new value of the Heat of Formation at 298K and 1 bar

Definition at line 828 of file ThermoPhase.h.

References ThermoPhase::err().

doublereal molarDensity (  )  const [inherited]
doublereal molarMass ( int  k  )  const [inline, inherited]

Return the Molar mass of species k.

Preferred name for molecular weight.

Parameters:
k index for species
Returns:
Return the molar mass of species k kg/kmol.

Definition at line 240 of file Constituents.h.

References Constituents::molecularWeight().

doublereal molecularWeight ( int  k  )  const [inherited]
const array_fp & molecularWeights (  )  const [inherited]

Return a const reference to the internal vector of molecular weights.

Reimplemented from Constituents.

Definition at line 298 of file Phase.cpp.

Referenced by Phase::getMolecularWeights().

const doublereal * moleFractdivMMW (  )  const [inherited]

Returns a read-only pointer to the start of the moleFraction/MW array.

This array is the array of mole fractions, each divided by the mean molecular weight.

Definition at line 215 of file State.cpp.

References State::m_ym.

Referenced by IdealSolnGasVPSS::calcDensity(), IdealSolidSolnPhase::calcDensity(), and IdealSolidSolnPhase::getActivityConcentrations().

doublereal moleFraction ( std::string  name  )  const [inherited]

Return the mole fraction of a single species.

Parameters:
name String name of the species
Returns:
Mole fraction of the species

Definition at line 318 of file Phase.cpp.

References Phase::moleFraction(), and Constituents::speciesIndex().

doublereal moleFraction ( int  k  )  const [inherited]
std::string name (  )  const [inherited]

Return the name of the phase.

Returns the name of the phase. The name of the phase is set to the string name of the phase within the XML file Generally, it refers to the individual model name that denotes the species, the thermo, and the reaction rate info. It may also refer more specifically to a location within the domain.

Definition at line 124 of file Phase.cpp.

References Phase::m_name.

Referenced by Cantera::operator<<(), ThermoPhase::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), and vcs_MultiPhaseEquil::reportCSV().

doublereal nAtoms ( int  k,
int  m 
) const [inherited]
int nDim (  )  const [inline, inherited]
int nElements (  )  const [inherited]
int nSpecies (  )  const [inline, inherited]
IdealSolidSolnPhase & operator= ( const IdealSolidSolnPhase b  ) 
virtual doublereal pressure (  )  const [inline, virtual]

Pressure.

Units: Pa. For this incompressible system, we return the internally storred independent value of the pressure.

Reimplemented from ThermoPhase.

Definition at line 280 of file IdealSolidSolnPhase.h.

References IdealSolidSolnPhase::m_Pcurrent.

Referenced by IdealSolidSolnPhase::enthalpy_mole().

bool ready (  )  const [virtual, inherited]

True if both elements and species have been frozen.

Reimplemented from Constituents.

Definition at line 363 of file Phase.cpp.

References Phase::m_kk, State::ready(), and Constituents::ready().

doublereal referenceConcentration ( int  k  )  const [virtual]

The reference (ie standard) concentration $ C^0_k $ used to normalize the generalized concentration.

In many cases, this quantity will be the same for all species in a phase. However, for this case, we will return a distinct concentration for each species. (clone of the standard concentration -> suggest changing the name). This is the inverse of the species molar volume.

Parameters:
k Species index.

Definition at line 505 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::m_formGC, Phase::m_kk, and IdealSolidSolnPhase::m_speciesMolarVolume.

doublereal refPressure (  )  const [inline, inherited]

Returns the reference pressure in Pa.

This function is a wrapper that calls the species thermo refPressure function.

Definition at line 759 of file ThermoPhase.h.

References ThermoPhase::m_spthermo, and SpeciesThermo::refPressure().

Referenced by IdealSolidSolnPhase::initLengths(), StoichSubstanceSSTP::initThermo(), SingleSpeciesTP::initThermo(), and IdealGasPhase::initThermo().

std::string report ( bool  show_thermo = true  )  const [virtual, inherited]
void restoreState ( int  lenstate,
const doublereal *  state 
) [inherited]

Restore the state of the phase from a previously saved state vector.

Parameters:
lenstate Length of the state vector
state Vector of state conditions.

Definition at line 154 of file Phase.cpp.

References Constituents::nSpecies(), State::setDensity(), State::setMassFractions_NoNorm(), and State::setTemperature().

void restoreState ( const vector_fp &  state  )  [inherited]

Restore a state saved on a previous call to saveState.

Parameters:
state State vector containing the previously saved state.

Definition at line 150 of file Phase.cpp.

virtual doublereal satPressure ( doublereal  t  )  const [inline, virtual, inherited]

Return the saturation pressure given the temperature.

Parameters:
t Temperature (Kelvin)

Reimplemented in DebyeHuckel, HMWSoln, PureFluidPhase, SingleSpeciesTP, and WaterSSTP.

Definition at line 1817 of file ThermoPhase.h.

References ThermoPhase::err().

virtual doublereal satTemperature ( doublereal  p  )  const [inline, virtual, inherited]

Return the saturation temperature given the pressure.

Parameters:
p Pressure (Pa)

Reimplemented in DebyeHuckel, HMWSoln, PureFluidPhase, and SingleSpeciesTP.

Definition at line 1809 of file ThermoPhase.h.

References ThermoPhase::err().

void saveSpeciesData ( const int  k,
const XML_Node *const   data 
) [inherited]

Store a reference pointer to the XML tree containing the species data for this phase.

The following methods are used in the process of constructing the phase and setting its parameters from a specification in an input file. They are not normally used in application programs. To see how they are used, see files importCTML.cpp and ThermoFactory.cpp.

This is used to access data needed to construct transport manager later.

For internal use only.

Parameters:
k Species index
data Pointer to the XML_Node data containing information about the species in the phase.

Definition at line 941 of file ThermoPhase.cpp.

References ThermoPhase::m_speciesData.

void saveState ( int  lenstate,
doublereal *  state 
) const [inherited]

Write to array 'state' the current internal state.

Parameters:
lenstate length of the state array. Must be >= nSpecies() + 2
state output vector. Must be of length nSpecies() + 2 or greater.

Definition at line 144 of file Phase.cpp.

References State::density(), State::getMassFractions(), and State::temperature().

void saveState ( vector_fp &  state  )  const [inherited]

Save the current internal state of the phase.

Write to vector 'state' the current internal state.

Parameters:
state output vector. Will be resized to nSpecies() + 2 on return.

Definition at line 140 of file Phase.cpp.

References Constituents::nSpecies().

void setConcentrations ( const doublereal *const   c  )  [virtual]

Set the concentration,.

Parameters:
c Input vector of concentrations. Length: m_kk.

Reimplemented from State.

Definition at line 394 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::calcDensity().

void setDensity ( const doublereal  rho  )  [virtual]

Overwritten setDensity() function is necessary because the density is not an indendent variable.

This function will now throw an error condition

For internal use only.

May have to adjust the strategy here to make the eos for these materials slightly compressible, in order to create a condition where the density is a function of the pressure.

This function will now throw an error condition.

NOTE: This is a virtual function that overwrites the State.h class

Parameters:
rho Input density

This function will now throw an error condition

May have to adjust the strategy here to make the eos for these materials slightly compressible, in order to create a condition where the density is a function of the pressure.

This function will now throw an error condition.

NOTE: This is a virtual function that overwrites the State.h class

Reimplemented from State.

Definition at line 302 of file IdealSolidSolnPhase.cpp.

References State::density().

Referenced by IdealSolidSolnPhase::calcDensity().

void setElectricPotential ( doublereal  v  )  [inline, inherited]

Set the electric potential of this phase (V).

This is used by classes InterfaceKinetics and EdgeKinetics to compute the rates of charge-transfer reactions, and in computing the electrochemical potentials of the species.

Each phase may have its own electric potential.

Parameters:
v Input value of the electric potential in Volts

Reimplemented in IdealMolalSoln.

Definition at line 995 of file ThermoPhase.h.

References ThermoPhase::m_phi.

void setElementPotentials ( const vector_fp &  lambda  )  [inherited]

Stores the element potentials in the ThermoPhase object.

Called by function 'equilibrate' in ChemEquil.h to transfer the element potentials to this object after every successful equilibration routine. The element potentials are storred in their dimensionless forms, calculated by dividing by RT.

Parameters:
lambda Input vector containing the element potentials. Length = nElements. Units are Joules/kmol.

Definition at line 993 of file ThermoPhase.cpp.

References Cantera::GasConstant, ThermoPhase::m_hasElementPotentials, ThermoPhase::m_lambdaRRT, Constituents::nElements(), and State::temperature().

void setID ( std::string  id  )  [inherited]

Set the string id for the phase.

Sets the id of the phase. The ID of the phase is originally set to the string name of the phase within the XML file. Generally, it refers to the individual model name that denotes the species, the thermo, and the reaction rate info.

Parameters:
id String id of the phase

Definition at line 120 of file Phase.cpp.

References Phase::m_id.

void setIndex ( int  m  )  [inline, inherited]

For internal use only.

Set the index number. The Cantera interface library uses this method to set the index number to the location of the pointer to this object in the pointer array it maintains. Using this method for any other purpose will lead to unpredictable results if used in conjunction with the interface library.

Parameters:
m Input the index number.

Reimplemented from Phase.

Definition at line 1998 of file ThermoPhase.h.

References ThermoPhase::m_index.

void setMassFractions ( const doublereal *const   y  )  [virtual]

Set the mass fractions, and normalize them to one.

Parameters:
y Input vector of mass fractions. Length: m_kk.

Reimplemented from State.

Definition at line 374 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::calcDensity().

void setMassFractions_NoNorm ( const doublereal *const   y  )  [virtual]

Set the mass fractions, but don't normalize them to one.

Parameters:
y Input vector of mass fractions. Length: m_kk.

Reimplemented from State.

Definition at line 384 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::calcDensity().

void setMassFractionsByName ( const std::string &  x  )  [inherited]

Set the species mass fractions by name.

Species not listed by name in x are set to zero.

Parameters:
x String containing a composition map

Definition at line 204 of file Phase.cpp.

References Constituents::nSpecies(), Cantera::parseCompString(), Phase::setMassFractionsByName(), and Constituents::speciesName().

void setMassFractionsByName ( compositionMap yMap  )  [inherited]

Set the species mass fractions by name.

Parameters:
yMap map from species names to mass fraction values. Species not listed by name in yMap are set to zero.

Definition at line 193 of file Phase.cpp.

References Constituents::nSpecies(), State::setMassFractions(), and Constituents::speciesName().

Referenced by Phase::setMassFractionsByName(), ThermoPhase::setState_TPY(), Phase::setState_TRY(), and ThermoPhase::setStateFromXML().

void setMolarDensity ( const doublereal  rho  )  [virtual]

Overwritten setMolarDensity() function is necessary because the density is not an independent variable.

This function will now throw an error condition.

NOTE: This is virtual function that overwrites the State.h class

Parameters:
rho Input Density

Reimplemented from State.

Definition at line 344 of file IdealSolidSolnPhase.cpp.

void setMolecularWeight ( const int  k,
const double  mw 
) [inline, protected, inherited]

Set the molecular weight of a single species to a given value.

Parameters:
k id of the species
mw Molecular Weight (kg kmol-1)

Definition at line 385 of file State.h.

References State::m_molwts, and State::m_rmolwts.

Referenced by WaterSSTP::initThermoXML().

void setMoleFractions ( const doublereal *const   x  )  [virtual]

Set the mole fractions.

Parameters:
x Input vector of mole fractions. Length: m_kk.

Reimplemented from State.

Definition at line 354 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::calcDensity().

Referenced by IdealSolidSolnPhase::setMoleFractions_NoNorm().

void setMoleFractions_NoNorm ( const doublereal *const   x  )  [virtual]

Set the mole fractions, but don't normalize them to one.

setMoleFractions_NoNorm() (virtual from State)

Parameters:
x Input vector of mole fractions. Length: m_kk.

Sets the mole fractions and adjusts the internal density.

Reimplemented from State.

Definition at line 364 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::calcDensity(), and IdealSolidSolnPhase::setMoleFractions().

void setMoleFractionsByName ( const std::string &  x  )  [inherited]

Set the mole fractions of a group of species by name.

The string x is in the form of a composition map Species which are not listed by name in the composition map are set to zero.

Parameters:
x string x in the form of a composition map

Definition at line 177 of file Phase.cpp.

References Constituents::nSpecies(), Cantera::parseCompString(), Phase::setMoleFractionsByName(), and Constituents::speciesName().

void setMoleFractionsByName ( compositionMap xMap  )  [inherited]

Set the species mole fractions by name.

Parameters:
xMap map from species names to mole fraction values. Species not listed by name in xMap are set to zero.

Definition at line 166 of file Phase.cpp.

References Constituents::nSpecies(), State::setMoleFractions(), and Constituents::speciesName().

Referenced by Phase::setMoleFractionsByName(), ThermoPhase::setState_TPX(), Phase::setState_TRX(), and ThermoPhase::setStateFromXML().

void setName ( std::string  nm  )  [inherited]

Sets the string name for the phase.

Sets the name of the phase. The name of the phase is originally set to the string name of the phase within the XML file. Generally, it refers to the individual model name that denotes the species, the thermo, and the reaction rate info. It may also refer more specifically to a location within the domain.

Parameters:
nm String name of the phase

Definition at line 128 of file Phase.cpp.

References Phase::m_name.

void setNDim ( int  ndim  )  [inline, inherited]

Set the number of spatial dimensions (1, 2, or 3).

The number of spatial dimensions is used for vector involving directions.

Parameters:
ndim Input number of dimensions.

Definition at line 484 of file Phase.h.

References Phase::m_ndim.

Referenced by EdgePhase::EdgePhase(), EdgePhase::operator=(), and SurfPhase::SurfPhase().

virtual void setParameters ( int  n,
doublereal *const   c 
) [inline, virtual, inherited]

Set the equation of state parameters.

For internal use only.

The number and meaning of these depends on the subclass.

Parameters:
n number of parameters
c array of n coefficients

Reimplemented in ConstDensityThermo, DebyeHuckel, HMWSoln, IdealMolalSoln, LatticePhase, MetalSHEelectrons, MineralEQ3, SingleSpeciesTP, StoichSubstanceSSTP, electrodeElectron, and SurfPhase.

Definition at line 2009 of file ThermoPhase.h.

virtual void setParametersFromXML ( const XML_Node eosdata  )  [inline, virtual, inherited]

Set equation of state parameter values from XML entries.

This method is called by function importPhase() in file importCTML.cpp when processing a phase definition in an input file. It should be overloaded in subclasses to set any parameters that are specific to that particular phase model. Note, this method is called before the phase is initialzed with elements and/or species.

Parameters:
eosdata An XML_Node object corresponding to the "thermo" entry for this phase in the input file.

Reimplemented in ConstDensityThermo, DebyeHuckel, EdgePhase, HMWSoln, IdealMolalSoln, IdealSolnGasVPSS, LatticePhase, MetalSHEelectrons, MineralEQ3, PureFluidPhase, SingleSpeciesTP, StoichSubstanceSSTP, electrodeElectron, SurfPhase, VPStandardStateTP, and WaterSSTP.

Definition at line 2036 of file ThermoPhase.h.

void setPressure ( doublereal  p  )  [virtual]

Set the pressure at constant temperature.

Units: Pa. This method sets a constant within the object. The mass density is not a function of pressure.

Parameters:
p Input Pressure (Pa)

Reimplemented from ThermoPhase.

Definition at line 329 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::calcDensity(), and IdealSolidSolnPhase::m_Pcurrent.

void setReferenceComposition ( const doublereal *const   x  )  [virtual, inherited]

Sets the reference composition.

Parameters:
x Mole fraction vector to set the reference composition to. If this is zero, then the reference mole fraction is set to the current mole fraction vector.

Definition at line 891 of file ThermoPhase.cpp.

References DATA_PTR, State::getMoleFractions(), Phase::m_kk, and ThermoPhase::xMol_Ref.

Referenced by ThermoPhase::initThermoXML().

void setSpeciesThermo ( SpeciesThermo spthermo  )  [inline, inherited]

Install a species thermodynamic property manager.

The species thermodynamic property manager computes properties of the pure species for use in constructing solution properties. It is meant for internal use, and some classes derived from ThermoPhase may not use any species thermodynamic property manager. This method is called by function importPhase() in importCTML.cpp.

Parameters:
spthermo input pointer to the species thermodynamic property manager.

For internal use only.

Definition at line 1887 of file ThermoPhase.h.

References ThermoPhase::m_spthermo.

Referenced by VPSSMgrFactory::newVPSSMgr().

void setState_HP ( doublereal  h,
doublereal  p,
doublereal  tol = 1.e-4 
) [virtual, inherited]

Set the internally storred specific enthalpy (J/kg) and pressure (Pa) of the phase.

Parameters:
h Specific enthalpy (J/kg)
p Pressure (Pa)
tol Optional parameter setting the tolerance of the calculation. Defaults to 1.0E-4

Reimplemented in PureFluidPhase, and SingleSpeciesTP.

Definition at line 238 of file ThermoPhase.cpp.

References ThermoPhase::setState_HPorUV().

virtual void setState_Psat ( doublereal  p,
doublereal  x 
) [inline, virtual, inherited]

Set the state to a saturated system at a particular pressure.

Parameters:
p Pressure (Pa)
x Fraction of vapor

Reimplemented in DebyeHuckel, HMWSoln, PureFluidPhase, and SingleSpeciesTP.

Definition at line 1840 of file ThermoPhase.h.

References ThermoPhase::err().

void setState_PX ( doublereal  p,
doublereal *  x 
) [inherited]

Set the pressure (Pa) and mole fractions.

Note, the mole fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters:
p Pressure (Pa)
x Vector of mole fractions. Length is equal to m_kk.

Reimplemented in SingleSpeciesTP.

Definition at line 230 of file ThermoPhase.cpp.

References State::setMoleFractions(), and ThermoPhase::setPressure().

Referenced by IdealSolnGasVPSS::setToEquilState(), IdealSolidSolnPhase::setToEquilState(), and IdealGasPhase::setToEquilState().

void setState_PY ( doublereal  p,
doublereal *  y 
) [inherited]

Set the internally storred pressure (Pa) and mass fractions.

Note, the temperature is held constant during this operation. Note, the mass fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters:
p Pressure (Pa)
y Vector of mass fractions. Length is equal to m_kk.

Reimplemented in SingleSpeciesTP.

Definition at line 234 of file ThermoPhase.cpp.

References State::setMassFractions(), and ThermoPhase::setPressure().

void setState_RX ( doublereal  rho,
doublereal *  x 
) [inherited]

Set the density (kg/m^3) and mole fractions.

Parameters:
rho Density (kg/m^3)
x vector of species mole fractions. Length is equal to m_kk

Definition at line 259 of file Phase.cpp.

References State::setDensity(), and State::setMoleFractions().

void setState_RY ( doublereal  rho,
doublereal *  y 
) [inherited]

Set the density (kg/m^3) and mass fractions.

Parameters:
rho Density (kg/m^3)
y vector of species mass fractions. Length is equal to m_kk

Definition at line 264 of file Phase.cpp.

References State::setDensity(), and State::setMassFractions().

void setState_SP ( doublereal  s,
doublereal  p,
doublereal  tol = 1.e-4 
) [virtual, inherited]

Set the specific entropy (J/kg/K) and pressure (Pa).

This function fixes the internal state of the phase so that the specific entropy and the pressure have the value of the input parameters.

Parameters:
s specific entropy (J/kg/K)
p specific pressure (Pa).
tol Optional parameter setting the tolerance of the calculation. Defaults to 1.0E-4

Reimplemented in PureFluidPhase, and SingleSpeciesTP.

Definition at line 512 of file ThermoPhase.cpp.

References ThermoPhase::setState_SPorSV().

void setState_SV ( doublereal  s,
doublereal  v,
doublereal  tol = 1.e-4 
) [virtual, inherited]

Set the specific entropy (J/kg/K) and specific volume (m^3/kg).

This function fixes the internal state of the phase so that the specific entropy and specific volume have the value of the input parameters.

Parameters:
s specific entropy (J/kg/K)
v specific volume (m^3/kg).
tol Optional parameter setting the tolerance of the calculation. Defaults to 1.0E-4

Reimplemented in PureFluidPhase, and SingleSpeciesTP.

Definition at line 517 of file ThermoPhase.cpp.

References ThermoPhase::setState_SPorSV().

void setState_TNX ( doublereal  t,
doublereal  n,
const doublereal *  x 
) [inherited]

Set the internally storred temperature (K), molar density (kmol/m^3), and mole fractions.

Note, the mole fractions are always set first, before the molar density

Parameters:
t Temperature in kelvin
n molar density (kmol/m^3)
x vector of species mole fractions. Length is equal to m_kk

Definition at line 220 of file Phase.cpp.

References State::setMolarDensity(), State::setMoleFractions(), and State::setTemperature().

void setState_TP ( doublereal  t,
doublereal  p 
) [inherited]

Set the temperature (K) and pressure (Pa).

Setting the pressure may involve the solution of a nonlinear equation.

Parameters:
t Temperature (K)
p Pressure (Pa)

Reimplemented in DebyeHuckel, HMWSoln, IdealMolalSoln, and VPStandardStateTP.

Definition at line 226 of file ThermoPhase.cpp.

References ThermoPhase::setPressure(), and State::setTemperature().

Referenced by SingleSpeciesTP::setState_HP(), ThermoPhase::setState_HPorUV(), SingleSpeciesTP::setState_SP(), and ThermoPhase::setState_SPorSV().

void setState_TPX ( doublereal  t,
doublereal  p,
const std::string &  x 
) [inherited]

Set the temperature (K), pressure (Pa), and mole fractions.

Note, the mole fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters:
t Temperature (K)
p Pressure (Pa)
x String containing a composition map of the mole fractions. Species not in the composition map are assumed to have zero mole fraction

Reimplemented in SingleSpeciesTP.

Definition at line 186 of file ThermoPhase.cpp.

References Constituents::nSpecies(), Cantera::parseCompString(), Phase::setMoleFractionsByName(), ThermoPhase::setPressure(), State::setTemperature(), and Constituents::speciesName().

void setState_TPX ( doublereal  t,
doublereal  p,
compositionMap x 
) [inherited]

Set the temperature (K), pressure (Pa), and mole fractions.

Note, the mole fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters:
t Temperature (K)
p Pressure (Pa)
x Composition map of mole fractions. Species not in the composition map are assumed to have zero mole fraction

Reimplemented in SingleSpeciesTP.

Definition at line 181 of file ThermoPhase.cpp.

References Phase::setMoleFractionsByName(), ThermoPhase::setPressure(), and State::setTemperature().

void setState_TPX ( doublereal  t,
doublereal  p,
const doublereal *  x 
) [inherited]

Set the temperature (K), pressure (Pa), and mole fractions.

Note, the mole fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters:
t Temperature (K)
p Pressure (Pa)
x Vector of mole fractions. Length is equal to m_kk.

Reimplemented in SingleSpeciesTP.

Definition at line 176 of file ThermoPhase.cpp.

References State::setMoleFractions(), ThermoPhase::setPressure(), and State::setTemperature().

Referenced by MultiPhase::setMoles(), and MultiPhase::setPhaseMoleFractions().

void setState_TPY ( doublereal  t,
doublereal  p,
const std::string &  y 
) [inherited]

Set the internally storred temperature (K), pressure (Pa), and mass fractions of the phase.

Note, the mass fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters:
t Temperature (K)
p Pressure (Pa)
y String containing a composition map of the mass fractions. Species not in the composition map are assumed to have zero mass fraction

Reimplemented in SingleSpeciesTP.

Definition at line 211 of file ThermoPhase.cpp.

References Constituents::nSpecies(), Cantera::parseCompString(), Phase::setMassFractionsByName(), ThermoPhase::setPressure(), State::setTemperature(), and Constituents::speciesName().

void setState_TPY ( doublereal  t,
doublereal  p,
compositionMap y 
) [inherited]

Set the internally storred temperature (K), pressure (Pa), and mass fractions of the phase.

Note, the mass fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters:
t Temperature (K)
p Pressure (Pa)
y Composition map of mass fractions. Species not in the composition map are assumed to have zero mass fraction

Reimplemented in SingleSpeciesTP.

Definition at line 206 of file ThermoPhase.cpp.

References Phase::setMassFractionsByName(), ThermoPhase::setPressure(), and State::setTemperature().

void setState_TPY ( doublereal  t,
doublereal  p,
const doublereal *  y 
) [inherited]

Set the internally storred temperature (K), pressure (Pa), and mass fractions of the phase.

Note, the mass fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters:
t Temperature (K)
p Pressure (Pa)
y Vector of mass fractions. Length is equal to m_kk.

Reimplemented in SingleSpeciesTP.

Definition at line 201 of file ThermoPhase.cpp.

References State::setMassFractions(), ThermoPhase::setPressure(), and State::setTemperature().

void setState_TR ( doublereal  t,
doublereal  rho 
) [inherited]

Set the internally storred temperature (K) and density (kg/m^3).

Set the temperature (K) and density (kg/m^3).

Parameters:
t Temperature in kelvin
rho Density (kg/m^3)

Definition at line 244 of file Phase.cpp.

References State::setDensity(), and State::setTemperature().

void setState_TRX ( doublereal  t,
doublereal  dens,
compositionMap x 
) [inherited]

Set the internally storred temperature (K), density, and mole fractions.

Set the temperature (K), density (kg/m^3), and mole fractions.

Note, the mole fractions are always set first, before the density

Parameters:
t Temperature in kelvin
dens Density (kg/m^3)
x Composition Map containing the mole fractions. Species not included in the map are assumed to have a zero mole fraction.

Definition at line 226 of file Phase.cpp.

References State::setDensity(), Phase::setMoleFractionsByName(), and State::setTemperature().

void setState_TRX ( doublereal  t,
doublereal  dens,
const doublereal *  x 
) [inherited]

Set the internally storred temperature (K), density, and mole fractions.

Set the temperature (K), density (kg/m^3), and mole fractions.

Note, the mole fractions are always set first, before the density

Parameters:
t Temperature in kelvin
dens Density (kg/m^3)
x vector of species mole fractions. Length is equal to m_kk

Definition at line 215 of file Phase.cpp.

References State::setDensity(), State::setMoleFractions(), and State::setTemperature().

void setState_TRY ( doublereal  t,
doublereal  dens,
compositionMap y 
) [inherited]

Set the internally storred temperature (K), density, and mass fractions.

Set the temperature (K), density (kg/m^3), and mass fractions.

Note, the mass fractions are always set first, before the density

Parameters:
t Temperature in kelvin
dens Density (kg/m^3)
y Composition Map containing the mass fractions. Species not included in the map are assumed to have a zero mass fraction.

Definition at line 238 of file Phase.cpp.

References State::setDensity(), Phase::setMassFractionsByName(), and State::setTemperature().

void setState_TRY ( doublereal  t,
doublereal  dens,
const doublereal *  y 
) [inherited]

Set the internally storred temperature (K), density, and mass fractions.

Set the temperature (K), density (kg/m^3), and mass fractions.

Note, the mass fractions are always set first, before the density

Parameters:
t Temperature in kelvin
dens Density (kg/m^3)
y vector of species mass fractions. Length is equal to m_kk

Definition at line 232 of file Phase.cpp.

References State::setDensity(), State::setMassFractions(), and State::setTemperature().

virtual void setState_Tsat ( doublereal  t,
doublereal  x 
) [inline, virtual, inherited]

Set the state to a saturated system at a particular temperature.

Parameters:
t Temperature (kelvin)
x Fraction of vapor

Reimplemented in DebyeHuckel, HMWSoln, PureFluidPhase, and SingleSpeciesTP.

Definition at line 1831 of file ThermoPhase.h.

References ThermoPhase::err().

void setState_TX ( doublereal  t,
doublereal *  x 
) [inherited]

Set the internally storred temperature (K) and mole fractions.

Set the temperature (K) and mole fractions.

Parameters:
t Temperature in kelvin
x vector of species mole fractions. Length is equal to m_kk

Definition at line 249 of file Phase.cpp.

References State::setMoleFractions(), and State::setTemperature().

void setState_TY ( doublereal  t,
doublereal *  y 
) [inherited]

Set the internally storred temperature (K) and mass fractions.

Set the temperature (K) and mass fractions.

Parameters:
t Temperature in kelvin
y vector of species mass fractions. Length is equal to m_kk

Definition at line 254 of file Phase.cpp.

References State::setMassFractions(), and State::setTemperature().

void setState_UV ( doublereal  u,
doublereal  v,
doublereal  tol = 1.e-4 
) [virtual, inherited]

Set the specific internal energy (J/kg) and specific volume (m^3/kg).

This function fixes the internal state of the phase so that the specific internal energy and specific volume have the value of the input parameters.

Parameters:
u specific internal energy (J/kg)
v specific volume (m^3/kg).
tol Optional parameter setting the tolerance of the calculation. Defaults to 1.0E-4

Reimplemented in PureFluidPhase, and SingleSpeciesTP.

Definition at line 243 of file ThermoPhase.cpp.

References ThermoPhase::setState_HPorUV().

void setStateFromXML ( const XML_Node state  )  [virtual, inherited]

Set the initial state of the phase to the conditions specified in the state XML element.

This method sets the temperature, pressure, and mole fraction vector to a set default value.

Parameters:
state AN XML_Node object corresponding to the "state" entry for this phase in the input file.

Reimplemented in MolalityVPSSTP, and SurfPhase.

Definition at line 961 of file ThermoPhase.cpp.

References ctml::getChildValue(), ctml::getFloat(), XML_Node::hasChild(), State::setDensity(), Phase::setMassFractionsByName(), Phase::setMoleFractionsByName(), ThermoPhase::setPressure(), and State::setTemperature().

Referenced by ThermoPhase::initThermoXML().

virtual void setTemperature ( const doublereal  temp  )  [inline, virtual, inherited]
void setToEquilState ( const doublereal *  lambda_RT  )  [virtual]

Set mixture to an equilibrium state consistent with specified element potentials and the temperature.

Parameters:
lambda_RT vector of non-dimensional element potentials $ \lambda_m/RT $.

Reimplemented from ThermoPhase.

Definition at line 1305 of file IdealSolidSolnPhase.cpp.

References DATA_PTR, IdealSolidSolnPhase::gibbs_RT_ref(), Phase::m_kk, IdealSolidSolnPhase::m_mm, IdealSolidSolnPhase::m_pp, IdealSolidSolnPhase::m_Pref, Constituents::nAtoms(), and ThermoPhase::setState_PX().

doublereal size ( int  k  )  const [inline, inherited]
const std::vector< const XML_Node * > & speciesData (  )  const [inherited]

Return a pointer to the vector of XML nodes containing the species data for this phase.

Return a pointer to the XML tree containing the species data for this phase.

Definition at line 950 of file ThermoPhase.cpp.

References Phase::m_kk, and ThermoPhase::m_speciesData.

Referenced by MineralEQ3::initThermoXML(), HMWSoln::initThermoXML(), and DebyeHuckel::initThermoXML().

bool speciesFrozen (  )  [inline, inherited]

True if freezeSpecies has been called.

Definition at line 318 of file Constituents.h.

References Constituents::m_speciesFrozen.

int speciesIndex ( std::string  name  )  const [inherited]
double speciesMolarVolume ( int  k  )  const

Report the molar volume of species k.

units - $ m^3 kmol^-1 $

Parameters:
k species index

Definition at line 1333 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::m_speciesMolarVolume.

string speciesName ( int  k  )  const [inherited]
const vector< string > & speciesNames (  )  const [inherited]
SpeciesThermo& speciesThermo (  )  [inline, inherited]

Return a changeable reference to the calculation manager for species reference-state thermodynamic properties.

Todo:
This method will fail if no species thermo manager has been installed.

For internal use only.

Reimplemented in DebyeHuckel, HMWSoln, and IdealMolalSoln.

Definition at line 1899 of file ThermoPhase.h.

References ThermoPhase::m_spthermo.

Referenced by PDSS_SSVol::constructPDSSXML(), PDSS_ConstVol::constructPDSSXML(), PDSS_SSVol::initThermo(), PDSS_IdealGas::initThermo(), PDSS_ConstVol::initThermo(), VPSSMgrFactory::newVPSSMgr(), and PDSS::PDSS().

doublereal standardConcentration ( int  k  )  const [virtual]

The standard concentration $ C^0_k $ used to normalize the generalized concentration.

In many cases, this quantity will be the same for all species in a phase. However, for this case, we will return a distinct concentration for each species. This is the inverse of the species molar volume. Units for the standard concentration are kmol m-3.

Parameters:
k Species number: this is a require parameter, a change from the ThermoPhase base class, where it was an optional parameter.

Reimplemented from ThermoPhase.

Definition at line 493 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::m_formGC, Phase::m_kk, and IdealSolidSolnPhase::m_speciesMolarVolume.

int standardStateConvention (  )  const [virtual, inherited]

This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based.

Currently, there are two standard state conventions:

  • Temperature-based activities cSS_CONVENTION_TEMPERATURE 0
    • default
  • Variable Pressure and Temperature -based activities cSS_CONVENTION_VPSS 1

Reimplemented in VPStandardStateTP.

Definition at line 154 of file ThermoPhase.cpp.

References ThermoPhase::m_ssConvention.

void stateMFChangeCalc ( bool  forceChange = false  )  [inline, inherited]

Every time the mole fractions have changed, this routine will increment the stateMFNumber.

Parameters:
forceChange If this is true then the stateMFNumber always changes. This defaults to false.

Definition at line 31 of file State.cpp.

References State::m_stateNum.

Referenced by State::setConcentrations(), State::setMassFractions(), State::setMassFractions_NoNorm(), State::setMoleFractions(), and State::setMoleFractions_NoNorm().

int stateMFNumber (  )  const [inline, inherited]

Return the state number.

Return the State Mole Fraction Number.

Definition at line 445 of file State.h.

References State::m_stateNum.

doublereal sum_xlogQ ( doublereal *const  Q  )  const [inherited]

Evaluate $ \sum_k X_k \log Q_k $.

Parameters:
Q Vector of length m_kk to take the log average of
Returns:
Returns the indicated sum.

Definition at line 188 of file State.cpp.

References State::m_mmw, and State::m_ym.

doublereal sum_xlogx (  )  const [inherited]

Evaluate $ \sum_k X_k \log X_k $.

Returns:
returns the indicated sum. units are dimensionless.

Definition at line 184 of file State.cpp.

References State::m_mmw, and State::m_ym.

Referenced by IdealSolnGasVPSS::entropy_mole(), IdealSolidSolnPhase::entropy_mole(), IdealGasPhase::entropy_mole(), and IdealSolidSolnPhase::gibbs_mole().

doublereal temperature (  )  const [inline, inherited]

Temperature (K).

Definition at line 309 of file State.h.

References State::m_temp.

Referenced by ThermoPhase::_RT(), VPStandardStateTP::_updateStandardStateThermo(), SurfPhase::_updateThermo(), SingleSpeciesTP::_updateThermo(), IdealSolidSolnPhase::_updateThermo(), IdealGasPhase::_updateThermo(), HMWSoln::A_Debye_TP(), DebyeHuckel::A_Debye_TP(), MultiPhase::addPhase(), HMWSoln::ADebye_J(), HMWSoln::ADebye_L(), HMWSoln::ADebye_V(), IdealSolnGasVPSS::calcDensity(), HMWSoln::calcDensity(), LatticePhase::cp_mole(), ConstDensityThermo::cp_mole(), SingleSpeciesTP::cv_mole(), HMWSoln::d2A_DebyedT2_TP(), DebyeHuckel::d2A_DebyedT2_TP(), HMWSoln::dA_DebyedP_TP(), DebyeHuckel::dA_DebyedP_TP(), HMWSoln::dA_DebyedT_TP(), DebyeHuckel::dA_DebyedT_TP(), WaterSSTP::dthermalExpansionCoeffdT(), IdealSolnGasVPSS::enthalpy_mole(), IdealSolidSolnPhase::enthalpy_mole(), IdealGasPhase::enthalpy_mole(), SurfPhase::getChemPotentials(), IdealSolnGasVPSS::getChemPotentials(), IdealSolidSolnPhase::getChemPotentials(), IdealMolalSoln::getChemPotentials(), IdealGasPhase::getChemPotentials(), HMWSoln::getChemPotentials(), DebyeHuckel::getChemPotentials(), SingleSpeciesTP::getChemPotentials_RT(), IdealSolidSolnPhase::getChemPotentials_RT(), WaterSSTP::getCp_R_ref(), ThermoPhase::getElementPotentials(), WaterSSTP::getEnthalpy_RT(), SurfPhase::getEnthalpy_RT(), StoichSubstanceSSTP::getEnthalpy_RT(), MineralEQ3::getEnthalpy_RT(), IdealSolidSolnPhase::getEnthalpy_RT(), WaterSSTP::getEnthalpy_RT_ref(), WaterSSTP::getEntropy_R_ref(), SingleSpeciesTP::getGibbs_ref(), IdealSolidSolnPhase::getGibbs_ref(), WaterSSTP::getGibbs_RT(), SurfPhase::getGibbs_RT(), WaterSSTP::getGibbs_RT_ref(), StoichSubstanceSSTP::getIntEnergy_RT(), MineralEQ3::getIntEnergy_RT(), IdealSolidSolnPhase::getIntEnergy_RT(), StoichSubstanceSSTP::getIntEnergy_RT_ref(), MineralEQ3::getIntEnergy_RT_ref(), MetalSHEelectrons::getIntEnergy_RT_ref(), IdealSolidSolnPhase::getIntEnergy_RT_ref(), HMWSoln::getPartialMolarCp(), DebyeHuckel::getPartialMolarCp(), SurfPhase::getPartialMolarEnthalpies(), SingleSpeciesTP::getPartialMolarEnthalpies(), IdealSolnGasVPSS::getPartialMolarEnthalpies(), IdealSolidSolnPhase::getPartialMolarEnthalpies(), IdealGasPhase::getPartialMolarEnthalpies(), HMWSoln::getPartialMolarEnthalpies(), DebyeHuckel::getPartialMolarEnthalpies(), HMWSoln::getPartialMolarEntropies(), DebyeHuckel::getPartialMolarEntropies(), SingleSpeciesTP::getPartialMolarIntEnergies(), IdealSolnGasVPSS::getPartialMolarIntEnergies(), IdealGasPhase::getPartialMolarIntEnergies(), HMWSoln::getPartialMolarVolumes(), DebyeHuckel::getPartialMolarVolumes(), SingleSpeciesTP::getPureGibbs(), WaterSSTP::getStandardChemPotentials(), StoichSubstanceSSTP::getStandardChemPotentials(), MineralEQ3::getStandardChemPotentials(), MetalSHEelectrons::getStandardChemPotentials(), IdealGasPhase::getStandardChemPotentials(), WaterSSTP::getStandardVolumes_ref(), IdealSolnGasVPSS::gibbs_mole(), IdealSolidSolnPhase::gibbs_mole(), IdealGasPhase::gibbs_mole(), IdealSolidSolnPhase::intEnergy_mole(), IdealGasPhase::intEnergy_mole(), IdealGasPhase::logStandardConc(), IdealGasPhase::pressure(), ThermoPhase::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), HMWSoln::s_updatePitzer_CoeffWRTemp(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_lnMolalityActCoeff(), WaterSSTP::satPressure(), HMWSoln::satPressure(), Phase::saveState(), WaterSSTP::setDensity(), ThermoPhase::setElementPotentials(), WaterSSTP::setPressure(), VPStandardStateTP::setPressure(), IdealMolalSoln::setPressure(), IdealGasPhase::setPressure(), DebyeHuckel::setPressure(), SingleSpeciesTP::setState_HP(), ThermoPhase::setState_HPorUV(), SingleSpeciesTP::setState_SP(), ThermoPhase::setState_SPorSV(), SingleSpeciesTP::setState_SV(), SingleSpeciesTP::setState_UV(), IdealSolnGasVPSS::standardConcentration(), IdealGasPhase::standardConcentration(), MetalSHEelectrons::thermalExpansionCoeff(), IdealGasPhase::thermalExpansionCoeff(), VPStandardStateTP::updateStandardStateThermo(), and WaterSSTP::vaporFraction().

virtual doublereal thermalExpansionCoeff (  )  const [inline, virtual, inherited]

Return the volumetric thermal expansion coefficient. Units: 1/K.

The thermal expansion coefficient is defined as

\[ \beta = \frac{1}{v}\left(\frac{\partial v}{\partial T}\right)_P \]

Reimplemented in DebyeHuckel, HMWSoln, IdealGasPhase, IdealMolalSoln, MetalSHEelectrons, MineralEQ3, PureFluidPhase, StoichSubstanceSSTP, and WaterSSTP.

Definition at line 966 of file ThermoPhase.h.

References ThermoPhase::err().

Referenced by SingleSpeciesTP::cv_mole().

virtual void updateDensity (  )  [inline, virtual, inherited]
Deprecated:

Definition at line 971 of file ThermoPhase.h.

References Cantera::deprecatedMethod().

virtual doublereal vaporFraction (  )  const [inline, virtual, inherited]

Return the fraction of vapor at the current conditions.

Reimplemented in DebyeHuckel, HMWSoln, PureFluidPhase, SingleSpeciesTP, and WaterSSTP.

Definition at line 1822 of file ThermoPhase.h.

References ThermoPhase::err().

XML_Node & xml (  )  [inherited]

Returns a reference to the XML_Node storred for the phase.

The XML_Node for the phase contains all of the input data used to set up the model for the phase, during its initialization.

Definition at line 112 of file Phase.cpp.

References Phase::m_xml.

Referenced by WaterSSTP::constructPhaseFile(), IdealSolidSolnPhase::constructPhaseFile(), IdealMolalSoln::constructPhaseFile(), HMWSoln::constructPhaseFile(), DebyeHuckel::constructPhaseFile(), and ThermoPhase::initThermoFile().


Member Data Documentation

bool m_chargeNeutralityNecessary [protected, inherited]

Boolean indicating whether a charge neutrality condition is a necessity.

Note, the charge neutrality condition is not a necessity for ideal gas phases. There may be a net charge in those phases, because the NASA polynomials for ionized species in Ideal gases take this condition into account. However, liquid phases usually require charge neutrality in order for their derived thermodynamics to be valid.

Definition at line 2130 of file ThermoPhase.h.

Referenced by ThermoPhase::chargeNeutralityNecessary(), MolalityVPSSTP::MolalityVPSSTP(), and ThermoPhase::operator=().

array_fp m_cp0_R [mutable, protected]

Vector containing the species reference constant pressure heat capacities at T = m_tlast.

Definition at line 1080 of file IdealSolidSolnPhase.h.

Referenced by IdealSolidSolnPhase::_updateThermo(), IdealSolidSolnPhase::cp_R_ref(), IdealSolidSolnPhase::getCp_R_ref(), IdealSolidSolnPhase::initLengths(), and IdealSolidSolnPhase::operator=().

Elements* m_Elements [protected, inherited]
array_fp m_expg0_RT [mutable, protected]

Vector containing the species reference exp(-G/RT) functions at T = m_tlast.

Definition at line 1098 of file IdealSolidSolnPhase.h.

Referenced by IdealSolidSolnPhase::expGibbs_RT_ref(), IdealSolidSolnPhase::initLengths(), and IdealSolidSolnPhase::operator=().

int m_formGC [protected]
array_fp m_g0_RT [mutable, protected]
array_fp m_h0_RT [mutable, protected]
bool m_hasElementPotentials [protected, inherited]

Boolean indicating whether there is a valid set of saved element potentials for this phase.

Definition at line 2120 of file ThermoPhase.h.

Referenced by ThermoPhase::getElementPotentials(), ThermoPhase::operator=(), and ThermoPhase::setElementPotentials().

int m_index [protected, inherited]

Index number of the phase.

The Cantera interface library uses this member to set the index number to the location of the pointer to this object in the pointer array of ThermoPhase's it maintains. Using this member for any other purpose will lead to unpredictable results if used in conjunction with the interface library.

Reimplemented from Phase.

Definition at line 2106 of file ThermoPhase.h.

Referenced by ThermoPhase::index(), ThermoPhase::operator=(), and ThermoPhase::setIndex().

int m_kk [protected, inherited]

m_kk = Number of species in the phase.

For internal use only.

m_kk is a member of both the State and Constituents classes. Therefore, to avoid multiple inheritance problems, we need to restate it in here, so that the declarations in the two base classes become hidden.

Reimplemented from Constituents.

Definition at line 504 of file Phase.h.

Referenced by DebyeHuckel::_lnactivityWaterHelgesonFixedForm(), SurfPhase::_updateThermo(), IdealSolidSolnPhase::_updateThermo(), IdealGasPhase::_updateThermo(), IdealMolalSoln::calcDensity(), DebyeHuckel::calcDensity(), MolalityVPSSTP::calcMolalities(), ConstDensityThermo::expGibbs_RT(), IdealSolidSolnPhase::expGibbs_RT_ref(), IdealGasPhase::expGibbs_RT_ref(), MolalityVPSSTP::findCLMIndex(), Phase::freezeSpecies(), IdealMolalSoln::getActivities(), DebyeHuckel::getActivities(), ThermoPhase::getActivityCoefficients(), SingleSpeciesTP::getActivityCoefficients(), MolalityVPSSTP::getActivityCoefficients(), IdealSolnGasVPSS::getActivityCoefficients(), IdealSolidSolnPhase::getActivityCoefficients(), IdealGasPhase::getActivityCoefficients(), IdealSolnGasVPSS::getActivityConcentrations(), IdealSolidSolnPhase::getActivityConcentrations(), IdealMolalSoln::getActivityConcentrations(), DebyeHuckel::getActivityConcentrations(), SurfPhase::getChemPotentials(), IdealSolnGasVPSS::getChemPotentials(), IdealSolidSolnPhase::getChemPotentials(), IdealMolalSoln::getChemPotentials(), IdealGasPhase::getChemPotentials(), DebyeHuckel::getChemPotentials(), VPStandardStateTP::getChemPotentials_RT(), IdealSolnGasVPSS::getChemPotentials_RT(), IdealSolidSolnPhase::getChemPotentials_RT(), SurfPhase::getCoverages(), IdealSolidSolnPhase::getCp_R_ref(), ThermoPhase::getElectrochemPotentials(), MolalityVPSSTP::getElectrochemPotentials(), IdealSolidSolnPhase::getEnthalpy_RT(), IdealSolidSolnPhase::getEnthalpy_RT_ref(), IdealGasPhase::getEntropy_R(), IdealSolidSolnPhase::getEntropy_R_ref(), WaterSSTP::getGibbs_ref(), IdealSolidSolnPhase::getGibbs_ref(), IdealSolidSolnPhase::getGibbs_RT(), IdealGasPhase::getGibbs_RT(), IdealSolidSolnPhase::getGibbs_RT_ref(), IdealSolidSolnPhase::getIntEnergy_RT(), IdealGasPhase::getIntEnergy_RT(), IdealSolidSolnPhase::getIntEnergy_RT_ref(), IdealGasPhase::getIntEnergy_RT_ref(), MolalityVPSSTP::getMolalities(), IdealMolalSoln::getMolalityActivityCoefficients(), DebyeHuckel::getMolalityActivityCoefficients(), SurfPhase::getPartialMolarCp(), IdealSolnGasVPSS::getPartialMolarCp(), IdealSolidSolnPhase::getPartialMolarCp(), IdealMolalSoln::getPartialMolarCp(), DebyeHuckel::getPartialMolarCp(), SurfPhase::getPartialMolarEnthalpies(), IdealSolnGasVPSS::getPartialMolarEnthalpies(), IdealMolalSoln::getPartialMolarEnthalpies(), DebyeHuckel::getPartialMolarEnthalpies(), SurfPhase::getPartialMolarEntropies(), IdealSolnGasVPSS::getPartialMolarEntropies(), IdealSolidSolnPhase::getPartialMolarEntropies(), IdealMolalSoln::getPartialMolarEntropies(), IdealGasPhase::getPartialMolarEntropies(), DebyeHuckel::getPartialMolarEntropies(), IdealSolnGasVPSS::getPartialMolarIntEnergies(), IdealGasPhase::getPartialMolarIntEnergies(), IdealGasPhase::getPartialMolarVolumes(), DebyeHuckel::getPartialMolarVolumes(), IdealSolidSolnPhase::getPureGibbs(), IdealGasPhase::getPureGibbs(), ThermoPhase::getReferenceComposition(), VPStandardStateTP::getStandardChemPotentials(), IdealGasPhase::getStandardChemPotentials(), SurfPhase::getStandardVolumes(), IdealGasPhase::getStandardVolumes(), IdealGasPhase::getStandardVolumes_ref(), HMWSoln::HMWSoln(), VPStandardStateTP::initLengths(), MolalityVPSSTP::initLengths(), IdealSolnGasVPSS::initLengths(), IdealSolidSolnPhase::initLengths(), IdealMolalSoln::initLengths(), DebyeHuckel::initLengths(), VPStandardStateTP::initThermo(), ThermoPhase::initThermo(), SurfPhase::initThermo(), StoichSubstanceSSTP::initThermo(), SingleSpeciesTP::initThermo(), IdealGasPhase::initThermo(), VPStandardStateTP::initThermoXML(), IdealSolidSolnPhase::initThermoXML(), IdealMolalSoln::initThermoXML(), HMWSoln::initThermoXML(), DebyeHuckel::initThermoXML(), IdealSolidSolnPhase::logStandardConc(), VPStandardStateTP::operator=(), ThermoPhase::operator=(), Phase::operator=(), MolalityVPSSTP::osmoticCoefficient(), HMWSoln::readXMLBinarySalt(), HMWSoln::readXMLLambdaNeutral(), HMWSoln::readXMLPsiCommonAnion(), HMWSoln::readXMLPsiCommonCation(), HMWSoln::readXMLThetaAnion(), HMWSoln::readXMLThetaCation(), HMWSoln::readXMLZetaCation(), Phase::ready(), IdealSolidSolnPhase::referenceConcentration(), DebyeHuckel::s_update_d2lnMolalityActCoeff_dT2(), DebyeHuckel::s_update_dlnMolalityActCoeff_dP(), DebyeHuckel::s_update_dlnMolalityActCoeff_dT(), DebyeHuckel::s_update_lnMolalityActCoeff(), IdealMolalSoln::s_updateIMS_lnMolalityActCoeff(), SurfPhase::setCoverages(), SurfPhase::setCoveragesNoNorm(), MolalityVPSSTP::setMolalities(), ThermoPhase::setReferenceComposition(), MolalityVPSSTP::setSolvent(), IdealSolnGasVPSS::setToEquilState(), IdealSolidSolnPhase::setToEquilState(), IdealGasPhase::setToEquilState(), ThermoPhase::speciesData(), IdealSolidSolnPhase::standardConcentration(), and ThermoPhase::~ThermoPhase().

vector_fp m_lambdaRRT [protected, inherited]

Vector of element potentials.

-> length equal to number of elements

Definition at line 2116 of file ThermoPhase.h.

Referenced by ThermoPhase::getElementPotentials(), ThermoPhase::operator=(), and ThermoPhase::setElementPotentials().

int m_mm [protected]

m_mm = Number of distinct elements defined in species in this phase

Definition at line 1030 of file IdealSolidSolnPhase.h.

Referenced by IdealSolidSolnPhase::initLengths(), IdealSolidSolnPhase::operator=(), and IdealSolidSolnPhase::setToEquilState().

int m_ndim [protected, inherited]

m_ndim is the dimensionality of the phase.

Volumetric phases have dimensionality 3 and surface phases have dimensionality 2.

Definition at line 511 of file Phase.h.

Referenced by Phase::nDim(), Phase::operator=(), and Phase::setNDim().

doublereal m_Pcurrent [protected]

m_Pcurrent = The current pressure Since the density isn't a function of pressure, but only of the mole fractions, we need to independently specify the pressure.

The density variable which is inherited as part of the State class, m_dens, is always kept current whenever T, P, or X[] change.

Definition at line 1058 of file IdealSolidSolnPhase.h.

Referenced by IdealSolidSolnPhase::getChemPotentials(), IdealSolidSolnPhase::getChemPotentials_RT(), IdealSolidSolnPhase::getEnthalpy_RT(), IdealSolidSolnPhase::getGibbs_RT(), IdealSolidSolnPhase::getPureGibbs(), IdealSolidSolnPhase::operator=(), IdealSolidSolnPhase::pressure(), and IdealSolidSolnPhase::setPressure().

array_fp m_pe [mutable, protected]

Vector of potential energies for the species.

Definition at line 1103 of file IdealSolidSolnPhase.h.

Referenced by IdealSolidSolnPhase::_updateThermo(), IdealSolidSolnPhase::initLengths(), and IdealSolidSolnPhase::operator=().

doublereal m_phi [protected, inherited]

Storred value of the electric potential for this phase.

Units are Volts

Definition at line 2112 of file ThermoPhase.h.

Referenced by ThermoPhase::electricPotential(), IdealMolalSoln::electricPotential(), ThermoPhase::operator=(), ThermoPhase::setElectricPotential(), and IdealMolalSoln::setElectricPotential().

array_fp m_pp [mutable, protected]

Temporary array used in equilibrium calculations.

Definition at line 1108 of file IdealSolidSolnPhase.h.

Referenced by IdealSolidSolnPhase::initLengths(), IdealSolidSolnPhase::operator=(), and IdealSolidSolnPhase::setToEquilState().

doublereal m_Pref [protected]
array_fp m_s0_R [mutable, protected]
vector_fp m_speciesCharge [protected, inherited]
vector_fp m_speciesComp [protected, inherited]

Atomic composition of the species.

the number of atoms of i in species k is equal to m_speciesComp[k * m_mm + i] The length of this vector is equal to m_kk * m_mm

Definition at line 377 of file Constituents.h.

Referenced by Constituents::addUniqueSpecies(), Constituents::getAtoms(), Constituents::nAtoms(), and Constituents::operator=().

std::vector<const XML_Node *> m_speciesData [protected, inherited]

Vector of pointers to the species databases.

This is used to access data needed to construct the transport manager and other properties later in the initialization process. We create a copy of the XML_Node data read in here. Therefore, we own this data.

Definition at line 2096 of file ThermoPhase.h.

Referenced by ThermoPhase::operator=(), ThermoPhase::saveSpeciesData(), ThermoPhase::speciesData(), and ThermoPhase::~ThermoPhase().

bool m_speciesFrozen [protected, inherited]

Boolean indicating whether the number of species has been frozen.

During the construction of the phase, this is false. After construction of the the phase, this is true.

Definition at line 359 of file Constituents.h.

Referenced by Constituents::freezeSpecies(), Constituents::operator=(), Constituents::ready(), and Constituents::speciesFrozen().

array_fp m_speciesMolarVolume [protected]
std::vector<std::string> m_speciesNames [protected, inherited]
vector_fp m_speciesSize [protected, inherited]

m_speciesSize(): Vector of species sizes.

length m_kk This is used in some equations of state which employ the constant partial molar volume approximation. It's so fundamental we've put it at the Constituents class level

Definition at line 393 of file Constituents.h.

Referenced by Constituents::addUniqueSpecies(), HMWSoln::initLengths(), DebyeHuckel::initLengths(), MineralEQ3::initThermoXML(), HMWSoln::initThermoXML(), DebyeHuckel::initThermoXML(), Constituents::operator=(), Constituents::size(), and DebyeHuckel::standardConcentration().

SpeciesThermo* m_spthermo [protected, inherited]
int m_ssConvention [protected, inherited]

Contains the standard state convention.

Definition at line 2133 of file ThermoPhase.h.

Referenced by ThermoPhase::operator=(), and ThermoPhase::standardStateConvention().

doublereal m_tlast [mutable, protected]

Value of the temperature at which the thermodynamics functions for the reference state of the species were last evaluated.

Definition at line 1069 of file IdealSolidSolnPhase.h.

Referenced by IdealSolidSolnPhase::_updateThermo(), and IdealSolidSolnPhase::operator=().

doublereal m_tmax [protected]

Minimum temperature that this phase can accurately describe the thermodynamics.

Definition at line 1042 of file IdealSolidSolnPhase.h.

Referenced by IdealSolidSolnPhase::initLengths(), and IdealSolidSolnPhase::operator=().

doublereal m_tmin [protected]

Maximum temperature that this phase can accurately describe the thermodynamics.

Definition at line 1036 of file IdealSolidSolnPhase.h.

Referenced by IdealSolidSolnPhase::initLengths(), and IdealSolidSolnPhase::operator=().

vector_fp m_weight [protected, inherited]

Vector of molecular weights of the species.

This vector has length m_kk. The units of the vector are kg kmol-1.

Definition at line 352 of file Constituents.h.

Referenced by WaterSSTP::initThermoXML(), Constituents::molecularWeight(), Constituents::molecularWeights(), and Constituents::operator=().

std::vector<doublereal> xMol_Ref [protected, inherited]

Reference Mole Fraction Composition.

Occasionally, the need arises to find a safe mole fraction vector to initialize the object to. This contains such a vector. The algorithm will pick up the mole fraction vector that is applied from the state xml file in the input file

Definition at line 2142 of file ThermoPhase.h.

Referenced by ThermoPhase::getReferenceComposition(), ThermoPhase::initThermo(), and ThermoPhase::setReferenceComposition().


The documentation for this class was generated from the following files:
Generated by  doxygen 1.6.3