2023

  1. Cavity-Induced Quantum Interference and Collective Interactions in van der Waals Systems. J. Cao and E. Pollak, arXiv preprint arXiv:2310.12881  
  2. Can natural sunlight induce coherent exciton dynamics? J. Olsina, A. G. Dijkstra, C. Wang, and J. Cao, arXiv:1408.5385  
  3. Efficiency at maximum power of a quantum Carnot engine with temperature tunable baths. J. Liu, C.-Y. Hsieh, and J. Cao, arXiv:1710.06565  
  4. Elucidating interprotein energy transfer dynamics within the antenna network from purple bacteria. Dihao Wang, Olivia C. Fiebig, Dvir Harris, Hila Toporik, Yi Ji, Chern Chuang, Muath Nairat, Ashley L. Tong, John I. Ogren, Stephanie M. Hart, Jianshu Cao, James N. Sturgis, Yuval Mazor, and Gabriela S. Schlau-Cohen, P.N.A.S. 120(28), e2220477120 (2023). https://doi.org/10.1073/pnas.2220477120  
  5. Nanodiscs as a novel approach to resolve inter-protein energy transfer within the photosynthetic membrane of purple bacteria. O. C Fiebig, D. Wang, D. Harris, H. Toporik, Y. Ji, C. Chuang, M. Nairat, A. L. Tong, J. I. Ogren, S. M. Hart, J. Cao, J. N. Sturgis, Y. Mazor, and G. Schlau-Cohen, Biophysical journal 122, 232a (2023). https://doi.org/10.1016/j.bpj.2022.11.1368  
  6. Thermal rate of transmission through a barrier: Exact expansion of up to and including terms of order h4. E. Pollak, J. Cao, Phys. Rev. A 107, 022203 (2023). https://doi.org/10.1103/PhysRevA.107.022203  
  7. Polariton localization and dispersion properties of disordered quantum emitters in multi-mode microcavities: Supplementary Information. G. Engelhardt and J. Cao, Physical Review Letters 130, 213602/1-7 (2023) https://doi.org/10.1103/PhysRevLett.130.213602  

  8. 2022

  9. Generalized Resonance Energy Transfer Theory: Applications to Vibrational Energy Flow in Optical Cavities. J. Cao, J. Phys. Chem. Lett. 13, 10943-10951 (2022). https://doi.org/10.1021/acs.jpclett.2c02707  
  10. Superradiance and Exciton Delocalization in Perovskite Quantum Dot Superlattices. Daria D. Blach, Victoria A. Lumsargis, Daniel E. Clark, Chern Chuang, Kang Wang, Letian Dou, Richard D. Schaller, Jianshu Cao, Christina W. Li and Libai Huang, Nano Lett. 22, 7811-7818 (2022). https://doi.org/10.1021/acs.nanolett.2c02427  
  11. 2 expansion of the transmission probability through a barrier. E. Pollak and J. Cao, J. Chem. Phys. 157, 074109/1-11 (2022). https://doi.org/10.1063/5.0106649  
  12. Long-Range Nonequilibrium Coherent Tunneling Induced by Fractional Vibronic Resonances. R. K. Kessing, P.-Y. Yang, S. R. Manmana, and J. Cao, J. Phys. Chem. Lett. 13, 6831–6838 (2022). https://doi.org/10.1021/acs.jpclett.2c01455  
  13. Bridging the Gap between H- and J-Aggregates: Classification and Supramolecular Tunability for Excitonic Band Structures in 2-Dimensional Molecular Aggregates. A. Deshmukh, N. Geue, N. Bradbury, T. Atallah, C. Chuang, M. Pengshung, J. Cao, E. Sletten, D. Neuhauser and J. Caram, Chem. Phys. Rev. 3, 021401/1-11 (2022). https://doi.org/10.1063/5.0094451  
  14. Higher-Order Photon Statistics as a New Tool to Reveal Hidden Excited States in a Plasmonic Cavity. P. Stegmann, S. N. Gupta, G. Haran and J. Cao, ACS Photonics 9, 2119–2127 (2022). https://doi.org/10.1021/acsphotonics.2c00375  
  15. Unusual dynamical properties of disordered polaritons in microcavities. G. Engelhardt and J. Cao, Phys. Rev. B 105, 064205/1-19 (2022). https://doi.org/10.1103/PhysRevB.105.064205  

  16. 2021

  17. Quantum Effects in Chemical Reactions under Polaritonic Vibrational Strong Coupling P.-Y. Yang and J. Cao, J. Phys. Chem. Lett. 12, 9531–9538 (2021).   https://doi.org/10.1103/PhysRevLett.127.047402
  18. Universal scalings in two-dimensional anisotropic dipolar excitonic systems. C. Chuang and J. Cao, Phys. Rev. Lett. 127(4), 047402/1-6 (2021).   https://doi.org/10.1103/PhysRevLett.127.047402
  19. Understanding the Optimal Cooperativity of Human Glucokinase: Kinetic Resonance in Nonequilibrium Conformational Fluctuations. W. Mu, J. Kong and J. Cao, J. Phys. Chem. Lett. 12, 2900-2904 (2021).   https://doi.org/10.1021/acs.jpclett.1c00438
  20. Dynamical Symmetries and Symmetry-Protected Selection Rules in Periodically Driven Quantum Systems. G. Engelhardt and J. Cao, Phys. Rev. Lett. 126, 090601/1-7 (2021).   https://dx.doi.org/10.1103/PhysRevLett.126.090601
  21. 2020

  22. Steady-State Analysis of Light-harvesting Energy Transfer Driven by Incoherent Light: From Dimers to Networks. P.-Y. Yang and J. Cao, J. Phys. Chem. Lett. 11, 7204-7211 (2020).   https://dx.doi.org/10.1021/acs.jpclett.0c01648
  23. Absorption and Circular Dichroism Spectra of Molecular Aggregates with the Full Cumulant Expansion. L. Cupellini, F. Lipparini, and J. Cao, J. Phys. Chem. B 124, 8610-8617 (2020).   https://dx.doi.org/10.1021/acs.jpcb.0c05180
  24. Magnetic field induced symmetry breaking in nonequilibrium quantum networks. J. Thingna, D. Manzano, and J. Cao, New J. Phys. 22, 083026/1-12 (2020).   https://doi.org/10.1088/1367-2630/aba0e4
  25. Unusual Transport Properties with Noncommutative System−Bath Coupling Operators. C. Duan, C.-Y. Hsieh, J. Liu, J. Wu, and J. Cao, J. Phys. Chem. Lett. 11(10), 4080-4085 (2020).   https://dx.doi.org/10.1021/acs.jpclett.0c00985
  26. The stability of spherocyte membranes: Theoretical study. W. Mu, Z. Ou-Yang, and J. Cao, EPL (Europhysics Letters) 128(3), 38001/1-7 (2020).   https://doi.org/10.1209/0295-5075/128/38001
  27. Temperature-Induced Catch-Slip to Slip Bond Transit in Plasmodium falciparum-Infected Erythrocytes. Y. B. Lim, J. Thingna, F. Kong, M. Dao, J. Cao, and C. T. Lim, Biophysical J. 118(1), 105-116 (2020).   https://doi.org/10.1016/j.bpj.2019.11.016
  28. Quantum Biology Revisited. J. Cao, R. J. Cogdell, D. F. Coker, H.-G. Duan, J. Hauer, U. Kleinekathöfer, T. L. C. Jansen, T. Mančal, R. J. Dwayne Miller, J. P. Ogilvie, V. I. Prokhorenko, T. Renger, H.-S. Tan, R. Tempelaar, M Thorwart, E. Thyrhaug, S. Westenhoff, and D. Zigmantas, Science Advances 6(14), 1-11 (2020).   https://dx.doi.org/10.1126/sciadv.aaz4888
  29. 2019

  30. Correlative Dark-Field and Photoluminescence Spectroscopy of Individual Plasmon-Molecule Hybrid Nanostructures in a Strong Coupling Regime. M. Wersäll, B. Munkhbat, D. Baranov, F. Herrera, J. Cao, T. J. Antosiewicz and T. Shegai, ACS Photonics 6(10), 2570-2576 (2019).   https://doi.org/10.1021/acsphotonics.9b01079
  31. Generalized Kasha’s Model: T-Dependent Spectroscopy Reveals Short-Range Structures of 2D Excitonic Systems. C. Chuang, D. I. G.Bennett, J. R. Caram, A. Aspuru-Guzik, M. G. Bawendi and J. Cao, Chem. 5(12), 3135-3150 (2019).   https://doi.org/10.1016/j.chempr.2019.08.013
  32. A Nonequilibrium Variational Polaron Theory to Study Quantum Heat Transport. C. Y. Hsieh, J. Liu, C. Duan and J. Cao, J. Phys. Chem. C 123(28), 17196-17204 (2019).   https://pubs.acs.org/doi/10.1021/acs.jpcc.9b05607
  33. Discontinuities in driven spin-boson systems due to coherent destruction of tunneling: breakdown of the Floquet-Gibbs distribution. G. Engelhardt, G. Platero and J. Cao, Phys. Rev. Lett. 123(12), 120602/1-7 (2019).   https://doi.org/10.1103/PhysRevLett.123.120602
  34. Tuning the Aharonov-Bohm effect with dephasing in nonequilibrium transport. G. Engelhardt and J. Cao, Phys. Rev. B 99(7), 075436/1-12 (2019)   https://doi.org/10.1103/PhysRevB.99.075436
  35. Design Principles for Two-Dimensional Molecular Aggregates Using Kasha's Model: Tunable Photophysics in Near and Short-Wave Infrared. A. P. Deshmukh, D. Koppel, C. Chuang, D. M. Cadena, J. Cao and J. R. Caram, J. Phys. Chem. 123(30), 18702-18710 (2019)   https://doi.org/10.1021/acs.jpcc.9b05060
  36. 2018

  37. Frequency-dependent current noise in quantum heat transfer with full counting statistics. J. Liu, C. -Y. Hsieh, C. Wu, and J. Cao, J. Chem. Phys. 148(23), 234104/1-11 (2018)   https://doi.org/10.1063/1.5025367
  38. Optimal initialization of a quantum system for an efficient coherent energy transfer. Z. Gong, Z. Tang, J. Cao and J. Wu, Chinese J. Chem. Phys. 31(4), 421-432 (2018)   https://doi.org/10.1063/1674-0068/31/cjcp1804068
  39. Interfacial thermal transport with strong system-bath coupling: A phonon delocalization effect. D. He, J. Thingna, and J. Cao, Phys. Rev. B 97(19), 195437/1-7 (2018)   https://doi.org/10.1103/PhysRevB.97.195437
  40. Photochemical control of exciton superradiance in light-harvesting nanotubes. S. Doria, T. S. Sinclair, N. D. Klein, D. I. G. Bennett, C. Chuang, F. S. Freyria, C. P. Steiner, P. Foggi, K. A. Nelson, J. Cao, A. Aspuru-Guzik, S. Lloyd, J. R. Caram, and M. G. Bawendi, ACS Nano 12(5), 4556-4564 (2018)    https://doi.org/10.1021/acsnano.8b00911
  41. Generic schemes for single-molecule kinetics. 3: Self-consistent pathway solutions for nonrenewal processes. D. E. Piephoff and J. Cao, J. Phys. Chem. B 122(17), 4601-4610 (2018)   https://doi.org/10.1021/acs.jpcb.7b10507
  42. Efficiency at maximum power of a laser quantum heat engine enhanced by noise-induced coherence. K. E. Dorfman, D. Xu, and J. Cao, Phys. Rev. E 97(4), 042120/1-8 (2018)   https://doi.org/10.1103/PhysRevE.97.042120
  43. Impact of the lipid bilayer on energy transfer kinetics in the photosynthetic protein LH2. J. I. Ogren, A. L. Tong, S. C. Gordon, A. Chenu, Y. Lu, R. E. Blankenship, J. Cao, and G. S. Schlau-Cohen, Chem. Sci. 9(12), 3095-3104 (2018)   http://dx.doi.org/10.1039/C7SC04814A
  44. A unified stochastic formulation of dissipative quantum dynamics. II. Beyond linear response of spin baths. C.-Y. Hsieh and J. Cao, J. Chem. Phys. 148(1), 014104/1-13 (2018)   https://doi.org/10.1063/1.5018726
  45. A unified stochastic formulation of dissipative quantum dynamics. I. Generalized hierarchical equations. C.-Y. Hsieh and J. Cao, J. Chem. Phys. 148(1), 014103/1-14 (2018)   https://doi.org/10.1063/1.5018725
  46. Nonadiabatic dynamics via the symmetrical quasi-classical method in the presence of anharmonicity. A. Kananenka, C.-Y. Hsieh, J. Cao, and E. Geva, J. Phys. Chem. Lett. 9(2), 319-326 (2018)   https://doi.org/10.1021/acs.jpclett.7b03002
  47. 2017

  48. Initial system-environment correlations via the transfer tensor method. M. Buser, J. Cerrillo, G. Schaller, and J. Cao, Phys. Rev. A 96(6), 062122/1-8 (2017)   https://doi.org/10.1103/PhysRevA.96.062122
  49. Light adaptation in phycobilisome antennas: Influence on the rod length and structural arrangement. A. Chenu, N. Karen, Y. Paltiel, R. Nevo, Z. Reich, and J. Cao, J. Phys. Chem. B 121(39), 9196-9202 (2017)   https://doi.org/10.1021/acs.jpcb.7b07781
  50. Graphene oxide inhibits malaria parasite invasion and delays parasitic growth in vitro. Kenry, Y. B. Lim, M. H. Nai, J. Cao, K. P. Loh, and C. T. Lim, Nanoscale 9(37), 14065-14073 (2017)   http://dx.doi.org/10.1039/C7NR06007F
  51. Generic schemes for single-molecule kinetics 2: Information content of the Poisson indicator. T. Avila, D. E. Piephoff, and J. Cao, J. Phys. Chem. B 121(33), 7750-7760 (2017)   https://doi.org/10.1021/acs.jpcb.7b01516
  52. Conformational nonequilibrium enzyme kinetics: Generalized Michaelis−Menten equation. D. E. Piephoff, J. Wu, and J. Cao, J. Phys. Chem. Lett. 8(15), 3619-3623 (2017)   https://doi.org/10.1021/acs.jpclett.7b01210
  53. Single molecule and multiple bond characterization of catch bond associated cytoadhesion in malaria. Y. B. Lim, J. Thingna, J. Cao, and C. T. Lim, Sci. Rep. 7, 4028/1-11 (2017)   https://doi.org/10.1038/s41598-017-04352-x
  54. Zero-temperature localization in a sub-Ohmic spin-boson model investigated by an extended hierarchy equation of motion. C. Duan, Z. Tang, J. Cao, and J. Wu, Phys. Rev. B 95(21), 214308/1-8 (2017)   https://doi.org/10.1103/PhysRevB.95.214308
  55. Quantum simulation of generic many-body open system dynamics using classical noise. A. Chenu, M. Beau, J. Cao, and A. del Campo, Phys. Rev. Lett. 118(14), 140403/1-6 (2017)   https://doi.org/10.1103/PhysRevLett.118.140403
  56. Expression dynamics and physiologically relevant functional study of STEVOR in asexual stages of Plasmodium falciparum infection. H. Singh, K. Madnani, Y. B. Lim, J. Cao, P. R. Preiser, and C. T. Lim, Cell. Microbiol. 19(6), e12715/1-11 (2017)   https://doi.org/10.1111/cmi.12715
  57. Unifying quantum heat transfer in a nonequilibrium spin-boson model with full counting statistics. C. Wang, J. Ren, and J. Cao, Phys. Rev. A 95(2), 023610/1-10 (2017)   https://doi.org/10.1103/PhysRevA.95.023610
  58. Construction of multichromophoric spectra from monomer data: Applications to resonant energy transfer. A. Chenu and J. Cao, Phys. Rev. Lett. 118(1), 013001/1-6 (2017)   https://doi.org/10.1103/PhysRevLett.118.013001
  59. 2016

  60. Accurate long-time mixed quantum-classical Liouville dynamics via the transfer tensor method. A. A. Kananenka, C.-Y. Hsieh, J. Cao, and E. Geva, J. Phys. Chem. Lett. 7(23), 4809-4814 (2016)   https://doi.org/10.1021/acs.jpclett.6b02389
  61. tRNA-mediated Codon-biased Translation in Mycobacterial Hypoxic Persistence. Y. H. Chionh, M. McBee, I. Babu, F. Hia, W. Lin, W. Zhao, J. Cao, A. Dziergowska, A. Malkiewicz, T. Begley, S. Alonso, and P. Dedon, Nat. Comm. 7. 13302/1-12 (2016)   https://doi.org/10.1038/ncomms13302
  62. The effects of cell asynchrony on gene expression levels: Analysis and application to Plasmodium falciparum. W. Zhao, J. Dauwels, and J. Cao, IEEE J. Biomed. Health Inform. 19(4), 1301-1307 (2016)   https://doi.org/10.1109/JBHI.2015.2434499
  63. Dynamical signatures of molecular symmetries in nonequilibrium quantum transport. J. Thingna, D. Manzano, and J. Cao, Sci. Rep. 6, 28027/1-11 (2016)   https://doi.org/10.1038/srep28027
  64. Quantum diffusion on molecular tubes: Universal scaling of the 1D to 2D transition. C. Chuang, C. K. Lee, J. M. Moix, J. Knoester, and J. Cao, Phys. Rev. Lett. 116(19), 196803/1-6 (2016)   https://doi.org/10.1103/PhysRevLett.116.196803
  65. Non-canonical distribution and non-equilibrium transport beyond weak system-bath coupling regime: A polaron transformation approach. D. Xu and J. Cao, Front. Phys. 11, 110308/1-17 (2016)   https://doi.org/10.1007/s11467-016-0540-2
  66. Transitions in genetic toggle switches driven by dynamic disorder in rate coefficients. H. Chen, P. Thill, and J. Cao, J. Chem. Phys. 144(17), 175104/1-8 (2016)   https://doi.org/10.1063/1.4948461
  67. Quantum transport in d-dimensional lattices. D. Manzano, C. Chuang, and J. Cao, New J. Phys. 18(4), 043044/1-10 (2016)   https://doi.org/10.1088/1367-2630/18/4/043044
  68. How two-dimensional brick layer J-aggregates differ from linear ones: Excitonic properties and line broadening mechanisms. A. G. Dijkstra, H.-G. Duan, J. Knoester, K. A. Nelson, and J. Cao, J. Chem. Phys. 144(13), 134310/1-10 (2016)   https://doi.org/10.1063/1.4944980
  69. Efficient simulation of non-Markovian system-environment interaction. R. Rosenbach, J. Cerrillo, S. F. Huelga, J. Cao, and M. B. Plenio, New J. Phys. 18(2), 023035/1-11 (2016)   http://dx.doi.org/10.1088/1367-2630/18/2/023035
  70. Polaron effects on the performance of light-harvesting systems: A quantum heat engine perspective. D. Xu, C. Wang, Y. Zhao, and J. Cao, New J. Phys. 18(2), 023003/1-14 (2016)   http://dx.doi.org/10.1088/1367-2630/18/2/023003
  71. Evolution of the single-nanocrystal photoluminescence linewidth with size and shell: Implications for exciton-phonon coupling and the optimization of spectral linewidths. J. Cui, A. P. Beyler, I. Coropceanu, L. Cleary, T. R. Avila, Y. Chen, J. M. Cordero, S. L. Heathcote, D. K. Harris, O. Chen, J. Cao, and M. G. Bawendi, Nano Lett. 16(1), 289-296 (2016)   https://doi.org/10.1021/acs.nanolett.5b03790

  72. 2015

  73. Stiffening of red blood cells induced by cytoskeleton disorders: A joint theory-experiment study. L. Lai, X. Xu, C. T. Lim, and J. Cao, Biophys. J. 109(11), 2287-2294 (2015)   https://doi.org/10.1016/j.bpj.2015.10.036
  74. Large area directed self-assembly of sub-10 nm particles with single particle positioning resolution. M. Asbahi, S. Mehraeen, F. Wang, N. Yakovlev, K. S. L. Chong, J. Cao, M. C. Tan, and J. K. W. Yang, Nano Lett. 15(9), 6066-6070 (2015)   https://doi.org/10.1021/acs.nanolett.5b02291
  75. Nonequilibrium energy transfer at nanoscale: A unified theory from weak to strong coupling. C. Wang, R. Jie, and J. Cao, Sci. Rep. 5, 11787/1-10 (2015)   https://doi.org/10.1038/srep11787
  76. Coherent quantum transport in disordered systems: A unified polaron treatment of hopping and band-like transport. C. K. Lee, J. M. Moix, and J. Cao, J. Chem. Phys. 142(16), 164103/1-7 (2015)   https://doi.org/10.1063/1.4918736
  77. Directed self-assembly of sub-10 nm particles: Role of driving forces and template geometry in packing and ordering. S. Mehraeen, M. Asbahi, W. Fuke, J. K. W. Yang, J. Cao, and M. C. Tan, Langmuir 31(31), 8548-8557 (2015)   https://doi.org/10.1021/acs.langmuir.5b01696
  78. A continued fraction resummation form of bath relaxation effect in the spin-boson model. Z. Gong, Z. Tang, S. Mukamel, J. Cao, and J. Wu, J. Chem. Phys. 142(8), 084103/1-9 (2015)   https://doi.org/10.1063/1.4913198
  79. Minimal model of quantum kinetic clusters for the energy-transfer network of a light-harvesting protein complex. J. Wu, Z. Tang, Z. Gong, J. Cao, and S. Mukamel, J. Phys. Chem. Lett. 6(7), 1240-1245 (2015)   https://doi.org/10.1021/acs.jpclett.5b00227
  80. Coherent exciton dynamics in the presence of underdamped vibrations. A. G. Dijkstra, C. Wang, J. Cao, and G. R. Fleming, J. Phys. Chem. Lett. 6(4), 627-632 (2015)   https://doi.org/10.1021/jz502701u
  81. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. III. Exact stochastic path integral evaluation. J. Moix, J. Ma, and J. Cao, J. Chem. Phys. 142(9), 094108/1-9 (2015)   https://doi.org/10.1063/1.4908601
  82. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. II. Hybrid cumulant expansion. J. Ma, J. Moix, and J. Cao, J. Chem. Phys. 142(9), 094107/1-8 (2015)   https://doi.org/10.1063/1.4908600
  83. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. I. Full cumulant expansions and system-bath entanglement. J. Ma and J. Cao, J. Chem. Phys. 142(9), 094106/1-13 (2015)   https://doi.org/10.1063/1.4908599

  84. 2014

  85. Translocation of a forced polymer chain through a crowded channel. J. X. Chen, J. X. Zhu, Y. Q. Ma, and J. Cao, Europhys. Lett. 106(1), 18003/1-6 (2014)   https://doi.org/10.1209/0295-5075/106/18003
  86. Correlated local bending of a DNA double helix and its effect on DNA flexibility in the sub-persistence-length regime. X. L. Xu, B. J. R. Thio, and J. Cao, J. Phys. Chem. Lett. 5(16), 2868-2873 (2014)   https://doi.org/10.1021/jz501290b
  87. Spectrins in axonal cytoskeletons: Dynamics revealed by extensions and fluctuations. L. Lai and J. Cao, J. Chem. Phys. 141(1), 015101/1-7 (2014)   https://doi.org/10.1063/1.4885720
  88. Excitonic effects from geometric order and disorder explain broadband optical absorption in eumelanin. C. Chen, C. Chuang, J. Cao, V. Ball, D. Ruch, and M. J. Buehler, Nat. Commun. 5, 3859/1-10 (2014)   https://doi.org/10.1038/ncomms4859
  89. Template-induced structure transition in sub-10 nm self-assembling nanoparticles. M. Asbahi, S. Mehraeen, K. T. P. Lim, F. Wang, J. Cao, M. C. Tan, and J. K. W. Yang, Nano Lett. 14(5), 2642-2646 (2014)   https://doi.org/10.1021/nl5004976
  90. Scaling relations and optimization of excitonic energy transfer rates between one-dimensional molecular aggregates. C. Chuang, J. Knoester, and J. Cao, J. Phys. Chem. B 118(28), 7827-7834 (2014)   https://doi.org/10.1021/jp4124502
  91. Optimal tunneling enhances the quantum photovoltaic effect in double quantum dots. C. Wang, J. Ren, and J. Cao, New J. Phys. 16, 045019/1-16 (2014)   http://dx.doi.org/10.1088/1367-2630/16/4/045019
  92. Coherent quantum transport in disordered systems: II. Temperature dependence of carrier diffusion coefficients from the time-dependent wavepacket diffusion method. X. Zhong, Y. Zhao, and J. Cao, New J. Phys. 16, 045009/1-15 (2014)   http://dx.doi.org/10.1088/1367-2630/16/4/045009
  93. Non-Markovian dynamical maps: Numerical processing of open quantum trajectories. J. Cerrillo and J. Cao, Phys. Rev. Lett. 112(11), 110401/1-5 (2014)   https://doi.org/10.1103/PhysRevLett.112.110401
  94. Shape transition of unstrained flattest single-walled carbon nanotubes under pressure. W. Mu, J. Cao, and Z. Ou-Yang, J. Appl. Phys. 115(4), 044512/1-6 (2014)   https://doi.org/10.1063/1.4863455

  95. 2013

  96. Optimal thermal bath for robust excitation energy transfer in disordered light-harvesting complex 2 of purple bacteria. L. Cleary and J. Cao, New J. Phys. 15, 125030/1-13 (2013)   https://doi:10.1088/1367-2630/15/12/125030
  97. A hybrid stochastic hierarchy equations of motion approach to treat the low temperature dynamics of non-Markovian open quantum systems. J. M. Moix and J. Cao, J. Chem. Phys. 139(13), 134106/1-9 (2013)   https://doi.org/10.1063/1.4822043
  98. Modeling spatial correlation of DNA deformation: DNA allostery in protein binding. X. L. Xu, H. Ge, C. Gu, Y. Q. Gao, S. S. Wang, B. J. R. Thio, J. T. Hynes, X. S. Xie, and J. Cao, J. Phys. Chem. B 117(42), 13378-13387 (2013)   https://doi.org/10.1021/jp4047243
  99. Coherent quantum transport in disordered systems: I. The influence of dephasing on the transport properties and absorption spectra on one-dimensional systems. J. M. Moix, M. Khasin, and J. Cao, New J. Phys. 15, 085010/1-21 (2013)   http://dx.doi.org/10.1088/1367-2630/15/8/085010
  100. Universality of Poisson indicator and Fano factor of transport event statistics in ion channels and enzyme kinetics. S. Chaudhury, J. Cao, and N. A. Sinitsyn, J. Phys. Chem. B 117(2), 503-509 (2013)   https://doi.org/10.1021/jp3096659
  101. Optimal fold symmetry of LH2 rings on a photosynthetic membrane. L. Cleary, H. Chen, C. Chuang, R. J. Silbey, and J. Cao, Proc. Natl. Acad. Sci. USA 110(21), 8537-8542 (2013)   https://doi.org/10.1073/pnas.1218270110
  102. Generic mechanism of optimal energy transfer efficiency: A scaling theory of the mean first-passage time in exciton systems. J. Wu, R. J. Silbey, and J. Cao, Phys. Rev. Lett. 110(20), 200402/1-5 (2013)   https://doi.org/10.1103/PhysRevLett.110.200402
  103. Probing the cytoadherence of malaria infected red blood cells under flow. X. Xu, A. K. Efremov, A. Li, L. Lai, M. Dao, C. T. Lim, and J. Cao, PLOS ONE 8(5), e64763/1-8 (2013)   https://dx.doi.org/10.1371%2Fjournal.pone.0064763
  104. A novel construction of complex-valued Gaussian processes with arbitrary spectral densities and its application to excitation energy transfer. X. Chen, J. Cao, and R. J. Silbey, J. Chem. Phys. 138(22), 224104/1-14 (2013)   https://doi.org/10.1063/1.4808377
  105. Higher-order kinetic expansion of quantum dissipative dynamics: Mapping quantum networks to kinetic networks. J. Wu and J. Cao, J. Chem. Phys. 139(4), 044102/1-13 (2013)   https://doi.org/10.1063/1.4812781

  106. 2012

  107. Reaction event counting statistics of biopolymer reaction systems with dynamic heterogeneity. Y. R. Lim, S. J. Park, B. J. Park, J. Cao, R. J. Silbey, and J. Sung, J. Chem. Theory Comput. 8(4), 1415-1425 (2012)   https://doi.org/10.1021/ct200785q
  108. Equilibrium-reduced density matrix formulation: Influence of noise, disorder, and temperature on localization in excitonic systems. J. Moix, Y. Zhao, and J. Cao, Phys. Rev. B 85(11), 115412/1-14 (2012)   https://doi.org/10.1103/PhysRevB.85.115412
  109. Accuracy of second order perturbation theory in the polaron and variational polaron frames. C. K. Lee, J. Moix, and J. Cao, J. Chem. Phys. 136(20), 204120/1-7 (2012)   https://doi.org/10.1063/1.4722336
  110. Computational synchronization of microarray data with application to Plasmodium falciparum. W. Zhao, J. Dauwels, J. C. Niles, and J. Cao, Proteome Science 10(Suppl 1):S10 1-17 (2012)   https://doi.org/10.1186/1477-5956-10-S1-S10
  111. Excitonic energy transfer in light-harvesting complexes in purple bacteria. J. Ye, K. Sun, Y. Zhao, Y. Yu, C. K. Lee, and J. Cao, J. Chem. Phys. 136(24), 245104/1-17 (2012)   https://doi.org/10.1063/1.4729786
  112. Noncanonical statistics of a spin-boson model: Theory and exact Monte Carlo simulations. C. K. Lee, J. Cao, and J. Gong, Phys. Rev. E 86(2), 021109/1-7 (2012)   https://doi.org/10.1103/PhysRevE.86.021109
  113. Efficient energy transfer in light-harvesting systems: Quantum-classical comparison, flux network, and robustness analysis. J. Wu, F. Liu, J. Ma, R. J. Silbey, and J. Cao, J. Chem. Phys. 137, 174111/1-12 (2012)   https://doi.org/10.1063/1.4762839

  114. 2011

  115. Michaelis-Menten equation and detailed balance in enzymatic networks. J. Cao, J. Phys. Chem. B, 115(18), 5493-5498 (2011)   https://doi.org/10.1021/jp110924w
  116. Quantitative interpretation of the randomness in single enzyme turnover times. S. Yang, J. Cao, R. J. Silbey, and J. Sung, Biophys. J. 101(3), 519-524 (2011)   https://doi.org/10.1016/j.bpj.2011.06.022
  117. Bistability of cell adhesion in shear flow. A. Efremov and J. Cao, Biophys. J. 101(5), 1032-1040 (2011)   https://doi.org/10.1016/j.bpj.2011.07.026
  118. Efficient energy transfer in light-harvesting systems, III: The influence of the eighth bacteriochlorophyll on the dynamics and efficiency in FMO. J. Moix, J. Wu, P. Huo, D. Coker, and J. Cao, J. Phys. Chem. Lett. 2, 3045-3052 (2011)   https://doi.org/10.1021/jz201259v
  119. Stochastic resonance of quantum discord. C. K. Lee, L. C. Kwek, and J. Cao, Phys. Rev. A 84, 062113/1-5 (2011)   https://doi.org/10.1103/PhysRevA.84.062113
  120. Generalized Michaelis-Menten equation for conformation-modulated monomeric enzymes. J. Wu and J. Cao, Adv. Chem. Phys. 146, 329-365 (2011)   https://doi.org/10.1002/9781118131374.ch12

  121. 2010

  122. Noise-induced dynamic symmetry breaking and stochastic transitions in ABA molecules: II. Symmetric-antisymmetric normal mode switching. M. Kryvohuz and J. Cao, Chem. Phys. 370, 258-269 (2010) [feature article]   https://doi.org/10.1016/j.chemphys.2010.02.024
  123. Noise-induced dynamic symmetry breaking and stochastic transitions in ABA molecules: I. Classification of vibrational modes. M. Kryvohuz and J. Cao, J. Phys. Chem. B 114(19), 6549-6560 (2010)   https://doi.org/10.1021/jp102675y
  124. Optimal efficiency of self-assembling light-harvesting arrays. J. Kim and J. Cao, J. Phys. Chem. B 114, 16189-16197 (2010)   https://doi.org/10.1021/jp106838k
  125. Efficient energy transfer in light-harvesting systems, I: Optimal temperature, reorganization energy and spatial-temporal correlations. J. Wu, F. Liu, Y. Shen, J. Cao, and R. J. Silbey, New J. Phys. 12, 105012/1-17 (2010)   https://doi.org/10.1088/1367-2630/12/10/105012

  126. 2009

  127. The influence of dissipation on the quantum-classical correspondence: Stability of stochastic trajectories. M. Kryvohuz and J. Cao, J. Chem. Phys. 130(23), 234107/1-10 (2009)   https://doi.org/10.1063/1.3154142
  128. Optimization of exciton trapping in energy transfer processes. J. Cao and R. J. Silbey, J. Phys. Chem. A 113(50), 13825-13838 (2009) [feature article] https://doi.org/10.1021/jp9032589
  129. Width of phonon sidebands in the Brownian oscillator model. J. Ye, Y. Zhao, N. Ng, and J. Cao, J. Phys. Chem. B 113, 5897-5904 (2009)   https://doi.org/10.1021/jp809425g

  130. 2008

  131. Analysis of the Entire Sequence of a Single Photon Experiment on a Flavin Protein. J. Witkoskie and J. Cao, J. Phys. Chem. B 112(19), 5988-5996 (2008)   https://doi.org/10.1021/jp075980p
  132. Generic schemes for single-molecule kinetics: 1: Self-consistent pathway solutions for renewal processes. J. Cao and R. J. Silbey, J. Phys. Chem. B 112, 12867-12880 (2008)   https://doi.org/10.1021/jp803347m
  133. Memory effects in single-molecule time series. J. Cao, Theory and Evaluation of Single-molecule Signals. Ed. E. Barkai, F. L. H. Brown, M. Orrit, and H. Yang. Singapore: World Scientific, p245 (2008)
  134. Suppression of photon-echo as a signature of chaos. M. Kryvohuz, J. Cao and S. Mukamel, J. Phys. Chem. B 112, 15999-16007 (2008)   https://doi.org/10.1021/jp804604h

  135. 2007

  136. Polarization selectivity of third-order and fifth-order Raman spectroscopies in liquids and solids. J. Wu, J. Cao and J. Fourkas, J. Phys. Chem. A 111(38), 9627-9631 (2007)   https://doi.org/10.1021/jp074716t
  137. On the thermodynamics of the liquid-solid transition in a small cluster. A. Zhukov, A.Kraynyukova and J. Cao, Phys. Lett. A 364(3-4), 329-334 (2007)   https://doi.org/10.1016/j.physleta.2006.12.004
  138. Extracting the number of quantum dots in a microenvironment from ensemble fluorescence intensity fluctuations. I. Chung, J. Witkoskie, J. Zimmer, J. Cao and M. Bawendi, Phys. Rev. B 75, 045311/1-6 (2007)   https://doi.org/10.1103/PhysRevB.75.045311

  139. 2006

  140. Classical divergence of nonlinear response functions. M. Kryvohuz and J. Cao, Phys. Rev. Lett. 96, 030403/1-4 (2006)   https://doi.org/10.1103/PhysRevLett.96.030403
  141. Description of the fluorescence intensity time trace of collections of CdSe nanocrystal quantum dots based on single quantum dot fluorescence blinking statistics. I. Chung, J. Witkoskie, J. Cao and M. Bawendi, Phys. Rev. E 73, 011106/1-7 (2006)   https://doi.org/10.1103/PhysRevE.73.011106
  142. Ground-state shapes and structures of colloidal domains. J. Wu and J. Cao, Physica A 371(2), 249-255 (2006)   https://doi.org/10.1016/j.physa.2006.05.026
  143. Kinetic theory of non-hamiltonian statistical ensembles. A. V. Zhukov and J. Cao, Condens. Matter Phys. 9, 637-643 (2006)   http://dspace.nbuv.gov.ua/handle/123456789/121375
  144. Testing for renewal and detailed balance violations in single-molecule blinking processes. J. Witkoskie and J. Cao, J. Phys. Chem. B, 110(38), 19009-19017 (2006)   https://doi.org/10.1021/jp061471w
  145. Correlations in single molecule photon statistics: Renewal indicator. J. Cao, J. Phys. Chem. B, 110(38), 19040-19043 (2006)   https://doi.org/10.1021/jp061302b
  146. Aging correlation functions of the interrupted fractional Fokker-Planck propagator. J. Witkoskie and J. Cao, J. Chem. Phys. 125(24), 244511/1-5 (2006)   https://doi.org/10.1063/1.2403874

  147. 2005

  148. Quantum recurrence from a semiclassical resummation. M. Kryvohuz and J. Cao, Chem. Phys. 322, 41-45 (2005)   https://doi.org/10.1016/j.chemphys.2005.07.021
  149. Stability analysis of three-dimensional colloidal domains: Quadratic fluctuations. J. Wu and J. Cao, J. Phys. Chem. B 109(45), 21342-21349 (2005)   https://doi.org/10.1021/jp0524431
  150. Quantum-classical correspondence in response theory. M. Kryvohuz and J. Cao, Phys. Rev. Lett. 95, 180405/1-4 (2005)   https://doi.org/10.1103/PhysRevLett.95.180405
  151. High-order mode-coupling theory for the colloidal glass transition. J. Wu and J. Cao, Phys. Rev. Lett. 95, 078301/1-4 (2005)   https://doi.org/10.1103/PhysRevLett.95.078301
  152. Stationary phase evaluations of quantum rate constants. S. Yang and J. Cao, J. Chem. Phys. 122(9), 094108/1-10 (2005)   https://doi.org/10.1063/1.1856461
  153. Phase and orientational ordering of A-B-A tri-block co-polymers guest in a quenched host of low molecular weight rod molecules. L. Gutman, J. Cao, T. Swager, and E. Thomas, Chem. Phys. Lett. 408(1-3), 139-144 (2005)   https://doi.org/10.1016/j.cplett.2005.03.151
  154. Nondivergent classical response functions from uncertainty principle: Quasiperiodic systems. M. Kryvohuz and J. Cao, J. Chem. Phys. 122(2), 024109/1-17 (2005)   https://doi.org/10.1063/1.1827212
  155. Low-temperature thermal transport in nanowires. A. Zhukov, S.Yang, and J. Cao, JETP Lett. 81(4), 190-194 (2005)   https://doi.org/10.1134/1.1914879

  156. 2004

  157. Structural arrest transitions in fluids described by two Yukawa potentials. J. Wu, Y. Liu, W. Chen, J. Cao, and S. Chen, Phys. Rev. E 70, 050401/1-4 (2004)   https://doi.org/10.1103/PhysRevE.70.050401"
  158. A semiclassical study of wave packet dynamics in anharmonic potentials. S. Yang, J. Cao, and R. W. Field, J. Chem. Phys. 121(14), 6599-6607 (2004)   https://doi.org/10.1063/1.1791131"
  159. Nonperturbative vibrational energy relaxation effects on vibrational line-shapes. S. Yang, J. Shao, and J. Cao, J. Chem. Phys. 121(22), 11250-11271 (2004)   https://doi.org/10.1063/1.1812748
  160. Theoretical analysis and computer simulation of fluorescence lifetime measurements. II. Contour length dependence of single polymers. S. Yang and J. Cao, J. Chem. Phys. 121(1), 572-581 (2004)   https://doi.org/10.1063/1.1756578
  161. Theoretical analysis and computer simulation of fluorescence lifetime measurements. I. Kinetic regimes and experimental time scales. S. Yang and J. Cao, J. Chem. Phys. 121(1), 562-571 (2004)   https://doi.org/10.1063/1.1756577
  162. Single molecule kinetics. II. Numerical Bayesian approach. J. Witkoskie and J. Cao, J. Chem. Phys. 121(13), 6373-6379 (2004)   https://doi.org/10.1063/1.1785784
  163. Single molecule kinetics. I. Theoretical analysis of indicators. J. Witkoskie and J. Cao, J. Chem. Phys. 121(13), 6361-6372 (2004)   https://doi.org/10.1063/1.1785783
  164. Phase and orientational ordering of low molecular weight rod molecules in a quenched liquid crystalline polymer matrix with mobile side chains. L. Gutman, J. Cao, and T. Swager, J. Chem. Phys. 120(23), 11316-11326 (2004)   https://doi.org/10.1063/1.1739211
  165. Orientational ordering of short LC rods in an anisotropic liquid crystalline polymer glass. L. Gutman, J. Cao, T. Swager, and E. Thomas, Chem. Phys. Lett. 389(1-3), 198-203 (2004)   https://doi.org/10.1016/j.cplett.2004.02.086
  166. Scaling and universality of inherent structure simulations. J. Witkoskie and J. Cao, Phys. Rev. E 69(6), 061108/1-10 (2004)   https://doi.org/10.1103/PhysRevE.69.061108
  167. East model: Basis set expansion, mode coupling, and irreducible memory kernels. J. Wu and J. Cao, J. Phys. Chem. B 108(21), 6796-6808 (2004)   https://doi.org/10.1021/jp037579i
  168. Basis set study of classical rotor lattice dynamics. J. Witkoskie, J. Wu, and J. Cao, J. Chem. Phys. 120(12), 5695-5708 (2004)   https://doi.org/10.1063/1.1649735

  169. 2003

  170. First-principle path integral study of DNA under hydrodynamic flows. S. Yang, J. Witkoskie and J. Cao, Chem. Phys. Lett. 377(3-4), 399-405 (2003)   https://doi.org/10.1016/S0009-2614(03)01135-7
  171. Gaussian factorization of hydrodynamic correlation functions and mode-coupling memory kernels. J. Wu and J. Cao, Phys. Rev. E 67(6), 061116/1-12 (2003)   https://doi.org/10.1103/PhysRevE.67.061116

  172. 2002

  173. Brownian motion in dynamically disordered media. J. Witkoskie, S. Yang, and J. Cao, Phys. Rev. E 66(5), 051111/1-15 (2002)   https://doi.org/10.1103/PhysRevE.66.051111
  174. Single-molecule dynamics of semiflexible Gaussian chains. S. Yang, J. Witkoskie, and J. Cao, J. Chem. Phys. 117(24), 11010-11023 (2002)   https://doi.org/10.1063/1.1521156
  175. Direct measurements of memory effects in single-molecule kinetics. S. Yang and J. Cao, J. Chem. Phys. 117(24), 10996-11009 (2002)   https://doi.org/10.1063/1.1521155
  176. On the temperature dependence of molecular line shapes due to linearly coupled phonon bands. S. Jang, J. Cao, and R. Silbey, J. Phys. Chem. B 106(33), 8313-8317 (2002)   https://doi.org/10.1021/jp0208440
  177. Semiclassical modeling of Rydberg wave-packet dynamics in diatomic molecules: Averge decoupling theory. S. Altunata, J. Cao, and R. W. Field, Phys. Rev. A 65(5), 053415/1-16 (2002)   https://doi.org/10.1103/PhysRevA.65.053415
  178. Fourth-order quantum master equation and its Markovian bath limit. S. Jang, J. Cao, and R. Silbey, J. Chem. Phys. 116(7), 2705-2717 (2002)   https://doi.org/10.1063/1.1445105
  179. Spectral analysis of electron transfer kinetics. II. Y. Jung and J. Cao, J. Chem. Phys. 117(8), 3822-3836 (2002)   https://doi.org/10.1063/1.1491241
  180. Calculations of nonlinear spectra of liquid Xe. I. Third-order Raman response. J. Cao, J. Wu and S. Yang, J. Chem. Phys. 116(9), 3739-3759 (2002)   https://doi.org/10.1063/1.1445745
  181. Calculations of nonlinear spectra of liquid Xe. II. Fifth-order Raman response. J. Cao, J. Wu, and S. Yang, J. Chem. Phys. 116(9), 3760-3776 (2002)   https://doi.org/10.1063/1.1445746
  182. Optimal quantum control in dissipative environments: General formalism and perturbative limits. S. Jang and J. Cao, Laser Control and Manipulation of Molecules. Ed. A. D. Bandrauk, Y. Fujimura, and R. J. Gordon. Washington DC: American Chemical Society(2002)

  183. 2001

  184. Nonadiabatic instanton calculation of multistate electron transfer reaction rate: Interference effects in three and four states systems. S. Jang and J. Cao, J. Chem. Phys. 114(22), 9959-9968 (2001)   https://doi.org/10.1063/1.1371262
  185. Two-event echos in single-molecule kinetics: A signature of conformational fluctuations. S. Yang and J. Cao, J. Phys. Chem. B 105(28), 6536-6549 (2001)   https://doi.org/10.1021/jp004349k
  186. Linear and nonlinear response functions of the Morse oscillator: Classical divergence and the uncertainty principle. J. Wu and J. Cao, J. Chem. Phys. 115(12), 5381-5391 (2001)   https://doi.org/10.1063/1.1389840
  187. Single molecule waiting time distribution functions in quantum processes. J. Cao, J. Chem. Phys. 114(12), 5137-5140 (2001)   https://doi.org/10.1063/1.1342217
  188. Single molecule tracking of heterogeneous diffusion. J. Cao, Phys. Rev. E 63(4), 041101/1-7 (2001)   https://doi.org/10.1103/PhysRevE.63.041101

  189. 2000

  190. Event-averaged measurements of single-molecule kinetics. J. Cao, Chem. Phys. Lett. 327(1-2), 38-44 (2000)   https://doi.org/10.1016/S0009-2614(00)00809-5
  191. Quantum coherence in nonlinear optical processes: Theory and possible application to control of chemical reaction and quantum computation. J. Cao, J. Lumin. 87-89, 30-34 (2000)   https://doi.org/10.1016/S0022-2313(99)00210-0
  192. Molecular π pulses: Population inversion with positively chirped short pulses. J. Cao, C. J. Bardeen, and K. R. Wilson, J. Chem. Phys. 113(5), 1898-1904 (2000)   https://doi.org/10.1063/1.481993
  193. Spectral analysis of electron transfer kinetics. I. Symmetric reactions. J. Cao and Y. Jung, J. Chem. Phys. 112(10), 4716-4722 (2000)   https://doi.org/10.1063/1.481027
  194. Effects of bath relaxation on dissipative two-state dynamics. J. Cao, J. Chem. Phys. 112(15), 6719-6724 (2000)   https://doi.org/10.1063/1.481247

  195. 1999

  196. Electronic Coherence in Mixed-Valence Systems: Spectral analysis. Y. Jung, R. Silbey, and J. Cao, J. Phys. Chem. A 103(47), 9460-9468 (1999)   https://doi.org/10.1021/jp9917594
  197. Steepest descent path study of electron-transfer reactions. J. Cao, J. Phys. Chem. A 103(49), 10571-10579 (1999)   https://doi.org/10.1021/jp992066q
  198. An adiabatic picture for electron transfer in mixed-valence systems. J. Cao, Chem. Phys. Lett. 312(5-6), 606-612 (1999)   https://doi.org/10.1016/S0009-2614(99)00840-4
  199. Using time-dependent rate equations to describe chirped pulse excitation in condensed phases. C. J. Bardeen, J. Cao, F. L. H. Brown, and K. R. Wilson, Chem. Phys. Lett. 302(5-6), 405-410 (1999)   https://doi.org/10.1016/S0009-2614(99)00175-X
  200. Ultrafast extended x-ray absorption fine structure (EXAFS)-theoretical considerations. F. L. H. Brown, K. R. Wilson, and J. Cao, J. Chem. Phys. 111(14), 6238-6246 (1999)   https://doi.org/10.1063/1.479928
  201. A unified approach for calculating quantum rate constants. J. Cao, Path Intregals from peV to TeV: 50 years after Feynman's Paper. Ed. R. Casalbuoni, R. Giachetti, V. Tognetti, R. Vaia, and P. Verrucchi. Singapore: World Scientific (1999)

  202. 1998

  203. Molecular "Π Pulse" for Total Inversion of Electronic State Population. J. Cao, C. J. Bardeen, K. R. Wilson, Phys. Rev. Lett. 80(7), 1406-1409 (1998)   https://doi.org/10.1103/PhysRevLett.80.1406
  204. Ultrafast X-ray diffraction theory: Time-scale considerations. J. Cao and K. R. Wilson, Proceedings of SPIE 3273, 219-224 (1998)   https://doi.org/10.1117/12.306131
  205. Ultrafast X-ray diffraction theory. J. Cao and K. R. Wilson, J. Phys. Chem. A 102(47), 9523-9530 (1998)   https://doi.org/10.1021/jp982054p
  206. Intrapulse dynamical effects in multiphoton processes: Theoretical analysis. J. Cao, J. Che, and K. R. Wilson, J. Phys. Chem. A 102(23), 4284-4290 (1998)   https://doi.org/10.1021/jp973097t
  207. Chirped pulse enhancement of multiphoton absorption in molecular iodine. V. V. Yakovlev, C. J. Bardeen, J. Che, J. Cao and K. R. Wilson, J. Chem. Phys. 108(6), 2309-2313 (1998)   https://doi.org/10.1063/1.475615

  208. 1997

  209. Ultrafast x-ray and electron diffraction: Theoretical considerations. M. Ben-Nun, J. Cao, and K. R. Wilson, J. Phys. Chem. A 101(47), 8743-8761 (1997)   https://doi.org/10.1021/jp971764c
  210. Optimal pump-dump control: Linearization and symmetry relation. Y. Yan, J. Cao, and Z. Shen, J. Chem. Phys. 107(9), 3471-3477 (1997)   https://doi.org/10.1063/1.474686
  211. A phase-space study of Bloch-Redfield theory. J. Cao, J. Chem. Phys. 107(8), 3204-3209 (1997)   https://doi.org/10.1063/1.474670
  212. Detecting wave packet motion in pump-probe experiments: Theoretical analysis. J. Cao and K. R. Wilson, J. Chem. Phys. 106(12), 5062-5072 (1997)   https://doi.org/10.1063/1.473552
  213. Quantum control of dissipative systems: Exact solutions. J. Cao, M. Messina, and K. R. Wilson, J. Chem. Phys. 106(12), 5239-5248 (1997)   https://doi.org/10.1063/1.473522
  214. Linear theory for optimal control of molecular wave packets. J. Cao and K. R. Wilson, Phys. Rev. A 55(6), 4477-4482 (1997)   https://doi.org/10.1103/PhysRevA.55.4477
  215. A simple physical picture for quantum control of wave packet localization. J. Cao and K. R. Wilson, J. Chem. Phys. 107(5), 1441-1450 (1997)   https://doi.org/10.1063/1.475151
  216. A unified framework for quantum activated rate processes. II. The nonadiabatic limit. J. Cao and G. A. Voth, J. Chem. Phys. 106(5), 1769-1779 (1997)   https://doi.org/10.1063/1.474123

  217. 1996

  218. A unified framework for quantum activated rate processes. I. General theory. J. Cao and G. A. Voth, J. Chem. Phys. 105(16), 6856-6870 (1996)   https://doi.org/10.1063/1.471980
  219. A theory for the quantum activated rate constant in dissipative systems. J. Cao and G. A. Voth, Chem. Phys. Lett. 261(1-2), 111-116 (1996)   https://doi.org/10.1016/0009-2614(96)00940-2
  220. Semiclassical approximations to quantum dynamical time correlation functions. J. Cao and G. A. Voth, J. Chem. Phys. 104(1), 273-285 (1996)   https://doi.org/10.1063/1.470898
  221. A novel method for simulating quantum dissipative systems. J. Cao, L. W. Ungar, and G. A. Voth, J. Chem. Phys. 104(11), 4189-4197 (1996)   https://doi.org/10.1063/1.471230
  222. Adiabatic path integral molecular dynamics methods. II. Algorithms. J. Cao and G. J. Martyna, J. Chem. Phys. 104(5), 2028-2035 (1996)   https://doi.org/10.1063/1.470959

  223. 1995

  224. On the Feynman path centroid density as a phase space distribution in quantum statistical mechanics. R. Hernandez, J. Cao, and G. A. Voth, J. Chem. Phys. 103(12), 5018-5026 (1995)   https://doi.org/10.1063/1.470588
  225. The computation of electron transfer rates: The nonadiabatic instanton solution. J. Cao, C. Minichino, and G. A. Voth, J. Chem. Phys. 103(4), 1391-1399. (1995)   https://doi.org/10.1063/1.469762
  226. A theory for time correlation functions in liquids. J. Cao and G. A. Voth, J. Chem. Phys. 103(10), 4211-4220 (1995)   https://doi.org/10.1063/1.470660
  227. Modeling physical systems by effective harmonic oscillators: The optimized quadratic approximation. J. Cao and G. A.Voth, J. Chem. Phys. 102(8), 3337-3348 (1995)   https://doi.org/10.1063/1.469207
  228. A scaling and mapping theory for excess electrons in simple fluids. J. Cao and B. J. Berne, J. Chem. Phys. 102(1), 432-436 (1995)   https://doi.org/10.1063/1.469420

  229. 1994

  230. The formulation of quantum statistical mechanics based on the Feynman path centroid density. V. Quantum instantaneous normal mode theory of liquids. J. Cao and G. A. Voth, J. Chem. Phys. 101(7), 6184-6192 (1994)   https://doi.org/10.1063/1.468400
  231. The formulation of quantum statistical mechanics based on the Feynman path centroid density. IV. Algorithms for centroid molecular dynamics. J. Cao and G. A. Voth, J. Chem. Phys. 101(7), 6168-6183. (1994)   https://doi.org/10.1063/1.468399
  232. The formulation of quantum statistical mechanics based on the Feynman path centroid density. III. Phase space formalism and analysis of centroid molecular dynamics. J. Cao and G. A. Voth, J. Chem. Phys. 101(7), 6157-6167 (1994)   https://doi.org/10.1063/1.468503
  233. The formulation of quantum statistical mechanics based on the Feynman path centroid density. II. Dynamical properties. J. Cao and G. A. Voth, J. Chem. Phys. 100(7), 5106-5118 (1994)   https://doi.org/10.1063/1.467176
  234. The formulation of quantum statistical mechanics based on the Feynman path centroid density. I. Equilibrium properties. J. Cao and G. A. Voth, J. Chem. Phys. 100, 5093-5105 (1994)   https://doi.org/10.1063/1.467175
  235. A semiclassical reactive flux method for the calculation of condensed phase activated rate constants. D. E. Sagnella, J. Cao and G. A. Voth, Chem. Phys. 180(2-3), 167-180 (1994)   https://doi.org/10.1016/0301-0104(93)E0419-V
  236. Winding-number effect in path-integral simulations. J. Cao, Phys. Rev. E 49(1), 882-889 (1994)   https://doi.org/10.1103/PhysRevE.49.882

  237. 1993

  238. A new perspective on quantum time correlation functions. J. Cao and G. A. Voth, J. Chem. Phys. 99(12), 10070-10073. (1993)   https://doi.org/10.1063/1.465512
  239. Theory and simulation of polar and nonpolar polarizable fluids. J. Cao and B. J. Berne, J. Chem. Phys. 99(9), 6998-7011 (1993)   https://doi.org/10.1063/1.465446
  240. Theory of polarizable liquid crystals: Optical birefringence. J. Cao and B. J. Berne, J. Chem. Phys. 99(3), 2213-2220 (1993)   https://doi.org/10.1063/1.466200
  241. A Born-Oppenheimer approximation for path integrals with an application to electron solvation in polarizable fluids. J. Cao and B. J. Berne, J. Chem. Phys. 99(4), 2902-2916 (1993)   https://doi.org/10.1063/1.465198

  242. 1992

  243. Many-body dispersion forces of polarizable clusters and liquids. J. Cao and B. J. Berne, J. Chem. Phys. 97(11), 8628-8636 (1992)   https://doi.org/10.1063/1.463381
  244. A new quantum propagator for hard sphere and cavity systems. J. Cao and B. J. Berne, J. Chem. Phys. 97(4), 2382-2385 (1992)   https://doi.org/10.1063/1.463076

  245. 1990

  246. Low-temperature variational approximation for the Feynman quantum propagator and its application to the simulation of quantum systems. J. Cao and B. J. Berne, J. Chem. Phys. 92(12), 7531-7539 (1990)   https://doi.org/10.1063/1.458189
  247. Monte Carlo methods for accelerating barrier crossing: Anti-force-bias and variable step algorithms. J. Cao and B. J. Berne, J. Chem. Phys. 92(3), 1980-1985 (1990)   https://doi.org/10.1063/1.458029
  248. Linear theory of superradiance in a free-electron laser. S. Cai, J. Cao and A. Bhattacharjee, Phys. Rev. A 42(7), 4120-4126 (1990)   https://doi.org/10.1103/PhysRevA.42.4120

  249. 1989

  250. On energy estimators in path integral Monte Carlo simulations: Dependence of accuracy on algorithm. J. Cao and B. J. Berne, J. Chem. Phys. 91(10), 6359-6366. (1989)   https://doi.org/10.1063/1.457403

Accessibility