2025

  1. Can natural sunlight induce coherent exciton dynamics? J. Olšina, A.G. Dijkstra, C. Wang, J. Cao, arXiv preprint arXiv:1408.5385.  
  2. On the First-Passage Time Fluctuation Theorem in Complex Biomolecular Networks.  D.E. Piephoff and J. Cao, arXiv preprint arXiv:2501.09087.  
  3. Characterization of Polariton Dynamics in a Multimode Cavity: Noise-enhanced Ballistic Expansion. I. Tutunnikov, M. Qutubuddin, H. R. Sadeghpour, and J. Cao, arXiv preprint arXiv:2410.11051.  
  4. Unusual diffusivity in strongly disordered quantum lattices: Random dimer model. I. Tutunnikov and J. Cao, arXiv preprint arXiv:2405.20813.  
  5. Cavity-Induced Quantum Interference and Collective Interactions in van der Waals Systems. J. Cao and E. Pollak, J. Phys. Chem. Lett. 2025, 16, 22, 5466–5472 https://doi.org/10.1021/acs.jpclett.5c00031  
  6. Environment-assisted quantum transport of excitons in perovskite nanocrystal superlattices. D. Blach, V. A. Lumsargis-Roth, C. Chuang, D. E. Clark, S. Deng, O. F. Williams, C. W. Li, J. Cao, and L. Huang, Nat. Comm., 16(1), 1270. https://doi.org/10.1038/s41467-024-55812-8  
  7. Dynamical generation and transfer of nonclassical states in strongly interacting light-matter systems in cavities. I. Tutunnikov, V. Rokaj, J. Cao, and H. R. Sadeghpour, Quantum Sci. Technol. 10 (2025) 025002. https://doi.org/10.1088/2058-9565/ada2b8  
  8. 2024

  9. Extracting kinetic information from short-time trajectories: relaxation and disorder of lossy cavity polaritons. A. Wu, J. Cerrillo, and J. Cao, Nanophotonics, 13.14 (2024): 2575-2590. https://doi.org/10.1515/nanoph-2023-0831  
  10. A Tribute to Gregory A. Voth J. Jin, W. G. Noid, J. Li, R. Kumar, J. Cao, S. Jang, F. Paesani, D. Reichman J. Phys. Chem. B, 128(32), 7703-7706. https://doi.org/10.1021/acs.jpcb.4c04455  
  11. Erratum: Thermal rate of transmission through a barrier: Exact expansion of up to and including terms of order h 4 . E. Pollak, J. Cao, Phys. Rev. A 107 , 022203 (2023). https://doi.org/10.1103/PhysRevA.109.039901  
  12. 2023

  13. Coherent spatial control of wave packet dynamics on quantum lattices. I. Tutunnikov, C. Chuang,& J. Cao. J. Phys. Chem. Lett. 2023, 14, 51, 11632–11639. https://doi.org/10.1021/acs.jpclett.3c03047    
  14. Elucidating interprotein energy transfer dynamics within the antenna network from purple bacteria. Dihao Wang, Olivia C. Fiebig, Dvir Harris, Hila Toporik, Yi Ji, Chern Chuang, Muath Nairat, Ashley L. Tong, John I. Ogren, Stephanie M. Hart, Jianshu Cao, James N. Sturgis, Yuval Mazor, and Gabriela S. Schlau-Cohen, P.N.A.S. 120(28), e2220477120 (2023). https://doi.org/10.1073/pnas.2220477120  
  15. Nanodiscs as a novel approach to resolve inter-protein energy transfer within the photosynthetic membrane of purple bacteria. O. C Fiebig, D. Wang, D. Harris, H. Toporik, Y. Ji, C. Chuang, M. Nairat, A. L. Tong, J. I. Ogren, S. M. Hart, J. Cao, J. N. Sturgis, Y. Mazor, and G. Schlau-Cohen, Biophysical journal 122, 232a (2023). https://doi.org/10.1016/j.bpj.2022.11.1368  
  16. Thermal rate of transmission through a barrier: Exact expansion of up to and including terms of order h4. E. Pollak, J. Cao, Phys. Rev. A 107, 022203 (2023). https://doi.org/10.1103/PhysRevA.107.022203  
  17. Polariton localization and dispersion properties of disordered quantum emitters in multi-mode microcavities. G. Engelhardt and J. Cao, Physical Review Letters 130, 213602/1-7 (2023) https://doi.org/10.1103/PhysRevLett.130.213602  

  18. 2022

  19. Generalized Resonance Energy Transfer Theory: Applications to Vibrational Energy Flow in Optical Cavities. J. Cao, J. Phys. Chem. Lett. 13, 10943-10951 (2022). https://doi.org/10.1021/acs.jpclett.2c02707  
  20. Superradiance and Exciton Delocalization in Perovskite Quantum Dot Superlattices. Daria D. Blach, Victoria A. Lumsargis, Daniel E. Clark, Chern Chuang, Kang Wang, Letian Dou, Richard D. Schaller, Jianshu Cao, Christina W. Li and Libai Huang, Nano Lett. 22, 7811-7818 (2022). https://doi.org/10.1021/acs.nanolett.2c02427  
  21. 2 expansion of the transmission probability through a barrier. E. Pollak and J. Cao, J. Chem. Phys. 157, 074109/1-11 (2022). https://doi.org/10.1063/5.0106649  
  22. Long-Range Nonequilibrium Coherent Tunneling Induced by Fractional Vibronic Resonances. R. K. Kessing, P.-Y. Yang, S. R. Manmana, and J. Cao, J. Phys. Chem. Lett. 13, 6831–6838 (2022). https://doi.org/10.1021/acs.jpclett.2c01455  
  23. Bridging the Gap between H- and J-Aggregates: Classification and Supramolecular Tunability for Excitonic Band Structures in 2-Dimensional Molecular Aggregates. A. Deshmukh, N. Geue, N. Bradbury, T. Atallah, C. Chuang, M. Pengshung, J. Cao, E. Sletten, D. Neuhauser and J. Caram, Chem. Phys. Rev. 3, 021401/1-11 (2022). https://doi.org/10.1063/5.0094451  
  24. Higher-Order Photon Statistics as a New Tool to Reveal Hidden Excited States in a Plasmonic Cavity. P. Stegmann, S. N. Gupta, G. Haran and J. Cao, ACS Photonics 9, 2119–2127 (2022). https://doi.org/10.1021/acsphotonics.2c00375  
  25. Unusual dynamical properties of disordered polaritons in microcavities. G. Engelhardt and J. Cao, Phys. Rev. B 105, 064205/1-19 (2022). https://doi.org/10.1103/PhysRevB.105.064205  

  26. 2021

  27. Quantum Effects in Chemical Reactions under Polaritonic Vibrational Strong Coupling P.-Y. Yang and J. Cao, J. Phys. Chem. Lett. 12, 9531–9538 (2021).   https://doi.org/10.1103/PhysRevLett.127.047402
  28. Universal scalings in two-dimensional anisotropic dipolar excitonic systems. C. Chuang and J. Cao, Phys. Rev. Lett. 127(4), 047402/1-6 (2021).   https://doi.org/10.1103/PhysRevLett.127.047402
  29. Understanding the Optimal Cooperativity of Human Glucokinase: Kinetic Resonance in Nonequilibrium Conformational Fluctuations. W. Mu, J. Kong and J. Cao, J. Phys. Chem. Lett. 12, 2900-2904 (2021).   https://doi.org/10.1021/acs.jpclett.1c00438
  30. Dynamical Symmetries and Symmetry-Protected Selection Rules in Periodically Driven Quantum Systems. G. Engelhardt and J. Cao, Phys. Rev. Lett. 126, 090601/1-7 (2021).   https://dx.doi.org/10.1103/PhysRevLett.126.090601
  31. 2020

  32. Steady-State Analysis of Light-harvesting Energy Transfer Driven by Incoherent Light: From Dimers to Networks. P.-Y. Yang and J. Cao, J. Phys. Chem. Lett. 11, 7204-7211 (2020).   https://dx.doi.org/10.1021/acs.jpclett.0c01648
  33. Absorption and Circular Dichroism Spectra of Molecular Aggregates with the Full Cumulant Expansion. L. Cupellini, F. Lipparini, and J. Cao, J. Phys. Chem. B 124, 8610-8617 (2020).   https://dx.doi.org/10.1021/acs.jpcb.0c05180
  34. Magnetic field induced symmetry breaking in nonequilibrium quantum networks. J. Thingna, D. Manzano, and J. Cao, New J. Phys. 22, 083026/1-12 (2020).   https://doi.org/10.1088/1367-2630/aba0e4
  35. Unusual Transport Properties with Noncommutative System−Bath Coupling Operators. C. Duan, C.-Y. Hsieh, J. Liu, J. Wu, and J. Cao, J. Phys. Chem. Lett. 11(10), 4080-4085 (2020).   https://dx.doi.org/10.1021/acs.jpclett.0c00985
  36. The stability of spherocyte membranes: Theoretical study. W. Mu, Z. Ou-Yang, and J. Cao, EPL (Europhysics Letters) 128(3), 38001/1-7 (2020).   https://doi.org/10.1209/0295-5075/128/38001
  37. Temperature-Induced Catch-Slip to Slip Bond Transit in Plasmodium falciparum-Infected Erythrocytes. Y. B. Lim, J. Thingna, F. Kong, M. Dao, J. Cao, and C. T. Lim, Biophysical J. 118(1), 105-116 (2020).   https://doi.org/10.1016/j.bpj.2019.11.016
  38. Quantum Biology Revisited. J. Cao, R. J. Cogdell, D. F. Coker, H.-G. Duan, J. Hauer, U. Kleinekathöfer, T. L. C. Jansen, T. Mančal, R. J. Dwayne Miller, J. P. Ogilvie, V. I. Prokhorenko, T. Renger, H.-S. Tan, R. Tempelaar, M Thorwart, E. Thyrhaug, S. Westenhoff, and D. Zigmantas, Science Advances 6(14), 1-11 (2020).   https://dx.doi.org/10.1126/sciadv.aaz4888
  39. 2019

  40. Correlative Dark-Field and Photoluminescence Spectroscopy of Individual Plasmon-Molecule Hybrid Nanostructures in a Strong Coupling Regime. M. Wersäll, B. Munkhbat, D. Baranov, F. Herrera, J. Cao, T. J. Antosiewicz and T. Shegai, ACS Photonics 6(10), 2570-2576 (2019).   https://doi.org/10.1021/acsphotonics.9b01079
  41. Generalized Kasha’s Model: T-Dependent Spectroscopy Reveals Short-Range Structures of 2D Excitonic Systems. C. Chuang, D. I. G.Bennett, J. R. Caram, A. Aspuru-Guzik, M. G. Bawendi and J. Cao, Chem. 5(12), 3135-3150 (2019).   https://doi.org/10.1016/j.chempr.2019.08.013
  42. A Nonequilibrium Variational Polaron Theory to Study Quantum Heat Transport. C. Y. Hsieh, J. Liu, C. Duan and J. Cao, J. Phys. Chem. C 123(28), 17196-17204 (2019).   https://pubs.acs.org/doi/10.1021/acs.jpcc.9b05607
  43. Discontinuities in driven spin-boson systems due to coherent destruction of tunneling: breakdown of the Floquet-Gibbs distribution. G. Engelhardt, G. Platero and J. Cao, Phys. Rev. Lett. 123(12), 120602/1-7 (2019).   https://doi.org/10.1103/PhysRevLett.123.120602
  44. Tuning the Aharonov-Bohm effect with dephasing in nonequilibrium transport. G. Engelhardt and J. Cao, Phys. Rev. B 99(7), 075436/1-12 (2019)   https://doi.org/10.1103/PhysRevB.99.075436
  45. Design Principles for Two-Dimensional Molecular Aggregates Using Kasha's Model: Tunable Photophysics in Near and Short-Wave Infrared. A. P. Deshmukh, D. Koppel, C. Chuang, D. M. Cadena, J. Cao and J. R. Caram, J. Phys. Chem. 123(30), 18702-18710 (2019)   https://doi.org/10.1021/acs.jpcc.9b05060
  46. 2018

  47. Frequency-dependent current noise in quantum heat transfer with full counting statistics. J. Liu, C. -Y. Hsieh, C. Wu, and J. Cao, J. Chem. Phys. 148(23), 234104/1-11 (2018)   https://doi.org/10.1063/1.5025367
  48. Optimal initialization of a quantum system for an efficient coherent energy transfer. Z. Gong, Z. Tang, J. Cao and J. Wu, Chinese J. Chem. Phys. 31(4), 421-432 (2018)   https://doi.org/10.1063/1674-0068/31/cjcp1804068
  49. Interfacial thermal transport with strong system-bath coupling: A phonon delocalization effect. D. He, J. Thingna, and J. Cao, Phys. Rev. B 97(19), 195437/1-7 (2018)   https://doi.org/10.1103/PhysRevB.97.195437
  50. Photochemical control of exciton superradiance in light-harvesting nanotubes. S. Doria, T. S. Sinclair, N. D. Klein, D. I. G. Bennett, C. Chuang, F. S. Freyria, C. P. Steiner, P. Foggi, K. A. Nelson, J. Cao, A. Aspuru-Guzik, S. Lloyd, J. R. Caram, and M. G. Bawendi, ACS Nano 12(5), 4556-4564 (2018)    https://doi.org/10.1021/acsnano.8b00911
  51. Generic schemes for single-molecule kinetics. 3: Self-consistent pathway solutions for nonrenewal processes. D. E. Piephoff and J. Cao, J. Phys. Chem. B 122(17), 4601-4610 (2018)   https://doi.org/10.1021/acs.jpcb.7b10507
  52. Efficiency at maximum power of a laser quantum heat engine enhanced by noise-induced coherence. K. E. Dorfman, D. Xu, and J. Cao, Phys. Rev. E 97(4), 042120/1-8 (2018)   https://doi.org/10.1103/PhysRevE.97.042120
  53. Impact of the lipid bilayer on energy transfer kinetics in the photosynthetic protein LH2. J. I. Ogren, A. L. Tong, S. C. Gordon, A. Chenu, Y. Lu, R. E. Blankenship, J. Cao, and G. S. Schlau-Cohen, Chem. Sci. 9(12), 3095-3104 (2018)   http://dx.doi.org/10.1039/C7SC04814A
  54. A unified stochastic formulation of dissipative quantum dynamics. II. Beyond linear response of spin baths. C.-Y. Hsieh and J. Cao, J. Chem. Phys. 148(1), 014104/1-13 (2018)   https://doi.org/10.1063/1.5018726
  55. A unified stochastic formulation of dissipative quantum dynamics. I. Generalized hierarchical equations. C.-Y. Hsieh and J. Cao, J. Chem. Phys. 148(1), 014103/1-14 (2018)   https://doi.org/10.1063/1.5018725
  56. Nonadiabatic dynamics via the symmetrical quasi-classical method in the presence of anharmonicity. A. Kananenka, C.-Y. Hsieh, J. Cao, and E. Geva, J. Phys. Chem. Lett. 9(2), 319-326 (2018)   https://doi.org/10.1021/acs.jpclett.7b03002
  57. 2017

  58. Initial system-environment correlations via the transfer tensor method. M. Buser, J. Cerrillo, G. Schaller, and J. Cao, Phys. Rev. A 96(6), 062122/1-8 (2017)   https://doi.org/10.1103/PhysRevA.96.062122
  59. Light adaptation in phycobilisome antennas: Influence on the rod length and structural arrangement. A. Chenu, N. Karen, Y. Paltiel, R. Nevo, Z. Reich, and J. Cao, J. Phys. Chem. B 121(39), 9196-9202 (2017)   https://doi.org/10.1021/acs.jpcb.7b07781
  60. Graphene oxide inhibits malaria parasite invasion and delays parasitic growth in vitro. Kenry, Y. B. Lim, M. H. Nai, J. Cao, K. P. Loh, and C. T. Lim, Nanoscale 9(37), 14065-14073 (2017)   http://dx.doi.org/10.1039/C7NR06007F
  61. Generic schemes for single-molecule kinetics 2: Information content of the Poisson indicator. T. Avila, D. E. Piephoff, and J. Cao, J. Phys. Chem. B 121(33), 7750-7760 (2017)   https://doi.org/10.1021/acs.jpcb.7b01516
  62. Conformational nonequilibrium enzyme kinetics: Generalized Michaelis−Menten equation. D. E. Piephoff, J. Wu, and J. Cao, J. Phys. Chem. Lett. 8(15), 3619-3623 (2017)   https://doi.org/10.1021/acs.jpclett.7b01210
  63. Single molecule and multiple bond characterization of catch bond associated cytoadhesion in malaria. Y. B. Lim, J. Thingna, J. Cao, and C. T. Lim, Sci. Rep. 7, 4028/1-11 (2017)   https://doi.org/10.1038/s41598-017-04352-x
  64. Zero-temperature localization in a sub-Ohmic spin-boson model investigated by an extended hierarchy equation of motion. C. Duan, Z. Tang, J. Cao, and J. Wu, Phys. Rev. B 95(21), 214308/1-8 (2017)   https://doi.org/10.1103/PhysRevB.95.214308
  65. Quantum simulation of generic many-body open system dynamics using classical noise. A. Chenu, M. Beau, J. Cao, and A. del Campo, Phys. Rev. Lett. 118(14), 140403/1-6 (2017)   https://doi.org/10.1103/PhysRevLett.118.140403
  66. Expression dynamics and physiologically relevant functional study of STEVOR in asexual stages of Plasmodium falciparum infection. H. Singh, K. Madnani, Y. B. Lim, J. Cao, P. R. Preiser, and C. T. Lim, Cell. Microbiol. 19(6), e12715/1-11 (2017)   https://doi.org/10.1111/cmi.12715
  67. Unifying quantum heat transfer in a nonequilibrium spin-boson model with full counting statistics. C. Wang, J. Ren, and J. Cao, Phys. Rev. A 95(2), 023610/1-10 (2017)   https://doi.org/10.1103/PhysRevA.95.023610
  68. Construction of multichromophoric spectra from monomer data: Applications to resonant energy transfer. A. Chenu and J. Cao, Phys. Rev. Lett. 118(1), 013001/1-6 (2017)   https://doi.org/10.1103/PhysRevLett.118.013001
  69. 2016

  70. Accurate long-time mixed quantum-classical Liouville dynamics via the transfer tensor method. A. A. Kananenka, C.-Y. Hsieh, J. Cao, and E. Geva, J. Phys. Chem. Lett. 7(23), 4809-4814 (2016)   https://doi.org/10.1021/acs.jpclett.6b02389
  71. tRNA-mediated Codon-biased Translation in Mycobacterial Hypoxic Persistence. Y. H. Chionh, M. McBee, I. Babu, F. Hia, W. Lin, W. Zhao, J. Cao, A. Dziergowska, A. Malkiewicz, T. Begley, S. Alonso, and P. Dedon, Nat. Comm. 7. 13302/1-12 (2016)   https://doi.org/10.1038/ncomms13302
  72. The effects of cell asynchrony on gene expression levels: Analysis and application to Plasmodium falciparum. W. Zhao, J. Dauwels, and J. Cao, IEEE J. Biomed. Health Inform. 19(4), 1301-1307 (2016)   https://doi.org/10.1109/JBHI.2015.2434499
  73. Dynamical signatures of molecular symmetries in nonequilibrium quantum transport. J. Thingna, D. Manzano, and J. Cao, Sci. Rep. 6, 28027/1-11 (2016)   https://doi.org/10.1038/srep28027
  74. Quantum diffusion on molecular tubes: Universal scaling of the 1D to 2D transition. C. Chuang, C. K. Lee, J. M. Moix, J. Knoester, and J. Cao, Phys. Rev. Lett. 116(19), 196803/1-6 (2016)   https://doi.org/10.1103/PhysRevLett.116.196803
  75. Non-canonical distribution and non-equilibrium transport beyond weak system-bath coupling regime: A polaron transformation approach. D. Xu and J. Cao, Front. Phys. 11, 110308/1-17 (2016)   https://doi.org/10.1007/s11467-016-0540-2
  76. Transitions in genetic toggle switches driven by dynamic disorder in rate coefficients. H. Chen, P. Thill, and J. Cao, J. Chem. Phys. 144(17), 175104/1-8 (2016)   https://doi.org/10.1063/1.4948461
  77. Quantum transport in d-dimensional lattices. D. Manzano, C. Chuang, and J. Cao, New J. Phys. 18(4), 043044/1-10 (2016)   https://doi.org/10.1088/1367-2630/18/4/043044
  78. How two-dimensional brick layer J-aggregates differ from linear ones: Excitonic properties and line broadening mechanisms. A. G. Dijkstra, H.-G. Duan, J. Knoester, K. A. Nelson, and J. Cao, J. Chem. Phys. 144(13), 134310/1-10 (2016)   https://doi.org/10.1063/1.4944980
  79. Efficient simulation of non-Markovian system-environment interaction. R. Rosenbach, J. Cerrillo, S. F. Huelga, J. Cao, and M. B. Plenio, New J. Phys. 18(2), 023035/1-11 (2016)   http://dx.doi.org/10.1088/1367-2630/18/2/023035
  80. Polaron effects on the performance of light-harvesting systems: A quantum heat engine perspective. D. Xu, C. Wang, Y. Zhao, and J. Cao, New J. Phys. 18(2), 023003/1-14 (2016)   http://dx.doi.org/10.1088/1367-2630/18/2/023003
  81. Evolution of the single-nanocrystal photoluminescence linewidth with size and shell: Implications for exciton-phonon coupling and the optimization of spectral linewidths. J. Cui, A. P. Beyler, I. Coropceanu, L. Cleary, T. R. Avila, Y. Chen, J. M. Cordero, S. L. Heathcote, D. K. Harris, O. Chen, J. Cao, and M. G. Bawendi, Nano Lett. 16(1), 289-296 (2016)   https://doi.org/10.1021/acs.nanolett.5b03790

  82. 2015

  83. Stiffening of red blood cells induced by cytoskeleton disorders: A joint theory-experiment study. L. Lai, X. Xu, C. T. Lim, and J. Cao, Biophys. J. 109(11), 2287-2294 (2015)   https://doi.org/10.1016/j.bpj.2015.10.036
  84. Large area directed self-assembly of sub-10 nm particles with single particle positioning resolution. M. Asbahi, S. Mehraeen, F. Wang, N. Yakovlev, K. S. L. Chong, J. Cao, M. C. Tan, and J. K. W. Yang, Nano Lett. 15(9), 6066-6070 (2015)   https://doi.org/10.1021/acs.nanolett.5b02291
  85. Nonequilibrium energy transfer at nanoscale: A unified theory from weak to strong coupling. C. Wang, R. Jie, and J. Cao, Sci. Rep. 5, 11787/1-10 (2015)   https://doi.org/10.1038/srep11787
  86. Coherent quantum transport in disordered systems: A unified polaron treatment of hopping and band-like transport. C. K. Lee, J. M. Moix, and J. Cao, J. Chem. Phys. 142(16), 164103/1-7 (2015)   https://doi.org/10.1063/1.4918736
  87. Directed self-assembly of sub-10 nm particles: Role of driving forces and template geometry in packing and ordering. S. Mehraeen, M. Asbahi, W. Fuke, J. K. W. Yang, J. Cao, and M. C. Tan, Langmuir 31(31), 8548-8557 (2015)   https://doi.org/10.1021/acs.langmuir.5b01696
  88. A continued fraction resummation form of bath relaxation effect in the spin-boson model. Z. Gong, Z. Tang, S. Mukamel, J. Cao, and J. Wu, J. Chem. Phys. 142(8), 084103/1-9 (2015)   https://doi.org/10.1063/1.4913198
  89. Minimal model of quantum kinetic clusters for the energy-transfer network of a light-harvesting protein complex. J. Wu, Z. Tang, Z. Gong, J. Cao, and S. Mukamel, J. Phys. Chem. Lett. 6(7), 1240-1245 (2015)   https://doi.org/10.1021/acs.jpclett.5b00227
  90. Coherent exciton dynamics in the presence of underdamped vibrations. A. G. Dijkstra, C. Wang, J. Cao, and G. R. Fleming, J. Phys. Chem. Lett. 6(4), 627-632 (2015)   https://doi.org/10.1021/jz502701u
  91. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. III. Exact stochastic path integral evaluation. J. Moix, J. Ma, and J. Cao, J. Chem. Phys. 142(9), 094108/1-9 (2015)   https://doi.org/10.1063/1.4908601
  92. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. II. Hybrid cumulant expansion. J. Ma, J. Moix, and J. Cao, J. Chem. Phys. 142(9), 094107/1-8 (2015)   https://doi.org/10.1063/1.4908600
  93. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. I. Full cumulant expansions and system-bath entanglement. J. Ma and J. Cao, J. Chem. Phys. 142(9), 094106/1-13 (2015)   https://doi.org/10.1063/1.4908599

  94. 2014

  95. Translocation of a forced polymer chain through a crowded channel. J. X. Chen, J. X. Zhu, Y. Q. Ma, and J. Cao, Europhys. Lett. 106(1), 18003/1-6 (2014)   https://doi.org/10.1209/0295-5075/106/18003
  96. Correlated local bending of a DNA double helix and its effect on DNA flexibility in the sub-persistence-length regime. X. L. Xu, B. J. R. Thio, and J. Cao, J. Phys. Chem. Lett. 5(16), 2868-2873 (2014)   https://doi.org/10.1021/jz501290b
  97. Spectrins in axonal cytoskeletons: Dynamics revealed by extensions and fluctuations. L. Lai and J. Cao, J. Chem. Phys. 141(1), 015101/1-7 (2014)   https://doi.org/10.1063/1.4885720
  98. Excitonic effects from geometric order and disorder explain broadband optical absorption in eumelanin. C. Chen, C. Chuang, J. Cao, V. Ball, D. Ruch, and M. J. Buehler, Nat. Commun. 5, 3859/1-10 (2014)   https://doi.org/10.1038/ncomms4859
  99. Template-induced structure transition in sub-10 nm self-assembling nanoparticles. M. Asbahi, S. Mehraeen, K. T. P. Lim, F. Wang, J. Cao, M. C. Tan, and J. K. W. Yang, Nano Lett. 14(5), 2642-2646 (2014)   https://doi.org/10.1021/nl5004976
  100. Scaling relations and optimization of excitonic energy transfer rates between one-dimensional molecular aggregates. C. Chuang, J. Knoester, and J. Cao, J. Phys. Chem. B 118(28), 7827-7834 (2014)   https://doi.org/10.1021/jp4124502
  101. Optimal tunneling enhances the quantum photovoltaic effect in double quantum dots. C. Wang, J. Ren, and J. Cao, New J. Phys. 16, 045019/1-16 (2014)   http://dx.doi.org/10.1088/1367-2630/16/4/045019
  102. Coherent quantum transport in disordered systems: II. Temperature dependence of carrier diffusion coefficients from the time-dependent wavepacket diffusion method. X. Zhong, Y. Zhao, and J. Cao, New J. Phys. 16, 045009/1-15 (2014)   http://dx.doi.org/10.1088/1367-2630/16/4/045009
  103. Non-Markovian dynamical maps: Numerical processing of open quantum trajectories. J. Cerrillo and J. Cao, Phys. Rev. Lett. 112(11), 110401/1-5 (2014)   https://doi.org/10.1103/PhysRevLett.112.110401
  104. Shape transition of unstrained flattest single-walled carbon nanotubes under pressure. W. Mu, J. Cao, and Z. Ou-Yang, J. Appl. Phys. 115(4), 044512/1-6 (2014)   https://doi.org/10.1063/1.4863455

  105. 2013

  106. Optimal thermal bath for robust excitation energy transfer in disordered light-harvesting complex 2 of purple bacteria. L. Cleary and J. Cao, New J. Phys. 15, 125030/1-13 (2013)   https://doi:10.1088/1367-2630/15/12/125030
  107. A hybrid stochastic hierarchy equations of motion approach to treat the low temperature dynamics of non-Markovian open quantum systems. J. M. Moix and J. Cao, J. Chem. Phys. 139(13), 134106/1-9 (2013)   https://doi.org/10.1063/1.4822043
  108. Modeling spatial correlation of DNA deformation: DNA allostery in protein binding. X. L. Xu, H. Ge, C. Gu, Y. Q. Gao, S. S. Wang, B. J. R. Thio, J. T. Hynes, X. S. Xie, and J. Cao, J. Phys. Chem. B 117(42), 13378-13387 (2013)   https://doi.org/10.1021/jp4047243
  109. Coherent quantum transport in disordered systems: I. The influence of dephasing on the transport properties and absorption spectra on one-dimensional systems. J. M. Moix, M. Khasin, and J. Cao, New J. Phys. 15, 085010/1-21 (2013)   http://dx.doi.org/10.1088/1367-2630/15/8/085010
  110. Universality of Poisson indicator and Fano factor of transport event statistics in ion channels and enzyme kinetics. S. Chaudhury, J. Cao, and N. A. Sinitsyn, J. Phys. Chem. B 117(2), 503-509 (2013)   https://doi.org/10.1021/jp3096659
  111. Optimal fold symmetry of LH2 rings on a photosynthetic membrane. L. Cleary, H. Chen, C. Chuang, R. J. Silbey, and J. Cao, Proc. Natl. Acad. Sci. USA 110(21), 8537-8542 (2013)   https://doi.org/10.1073/pnas.1218270110
  112. Generic mechanism of optimal energy transfer efficiency: A scaling theory of the mean first-passage time in exciton systems. J. Wu, R. J. Silbey, and J. Cao, Phys. Rev. Lett. 110(20), 200402/1-5 (2013)   https://doi.org/10.1103/PhysRevLett.110.200402
  113. Probing the cytoadherence of malaria infected red blood cells under flow. X. Xu, A. K. Efremov, A. Li, L. Lai, M. Dao, C. T. Lim, and J. Cao, PLOS ONE 8(5), e64763/1-8 (2013)   https://dx.doi.org/10.1371%2Fjournal.pone.0064763
  114. A novel construction of complex-valued Gaussian processes with arbitrary spectral densities and its application to excitation energy transfer. X. Chen, J. Cao, and R. J. Silbey, J. Chem. Phys. 138(22), 224104/1-14 (2013)   https://doi.org/10.1063/1.4808377
  115. Higher-order kinetic expansion of quantum dissipative dynamics: Mapping quantum networks to kinetic networks. J. Wu and J. Cao, J. Chem. Phys. 139(4), 044102/1-13 (2013)   https://doi.org/10.1063/1.4812781

  116. 2012

  117. Reaction event counting statistics of biopolymer reaction systems with dynamic heterogeneity. Y. R. Lim, S. J. Park, B. J. Park, J. Cao, R. J. Silbey, and J. Sung, J. Chem. Theory Comput. 8(4), 1415-1425 (2012)   https://doi.org/10.1021/ct200785q
  118. Equilibrium-reduced density matrix formulation: Influence of noise, disorder, and temperature on localization in excitonic systems. J. Moix, Y. Zhao, and J. Cao, Phys. Rev. B 85(11), 115412/1-14 (2012)   https://doi.org/10.1103/PhysRevB.85.115412
  119. Accuracy of second order perturbation theory in the polaron and variational polaron frames. C. K. Lee, J. Moix, and J. Cao, J. Chem. Phys. 136(20), 204120/1-7 (2012)   https://doi.org/10.1063/1.4722336
  120. Computational synchronization of microarray data with application to Plasmodium falciparum. W. Zhao, J. Dauwels, J. C. Niles, and J. Cao, Proteome Science 10(Suppl 1):S10 1-17 (2012)   https://doi.org/10.1186/1477-5956-10-S1-S10
  121. Excitonic energy transfer in light-harvesting complexes in purple bacteria. J. Ye, K. Sun, Y. Zhao, Y. Yu, C. K. Lee, and J. Cao, J. Chem. Phys. 136(24), 245104/1-17 (2012)   https://doi.org/10.1063/1.4729786
  122. Noncanonical statistics of a spin-boson model: Theory and exact Monte Carlo simulations. C. K. Lee, J. Cao, and J. Gong, Phys. Rev. E 86(2), 021109/1-7 (2012)   https://doi.org/10.1103/PhysRevE.86.021109
  123. Efficient energy transfer in light-harvesting systems: Quantum-classical comparison, flux network, and robustness analysis. J. Wu, F. Liu, J. Ma, R. J. Silbey, and J. Cao, J. Chem. Phys. 137, 174111/1-12 (2012)   https://doi.org/10.1063/1.4762839

  124. 2011

  125. Michaelis-Menten equation and detailed balance in enzymatic networks. J. Cao, J. Phys. Chem. B, 115(18), 5493-5498 (2011)   https://doi.org/10.1021/jp110924w
  126. Quantitative interpretation of the randomness in single enzyme turnover times. S. Yang, J. Cao, R. J. Silbey, and J. Sung, Biophys. J. 101(3), 519-524 (2011)   https://doi.org/10.1016/j.bpj.2011.06.022
  127. Bistability of cell adhesion in shear flow. A. Efremov and J. Cao, Biophys. J. 101(5), 1032-1040 (2011)   https://doi.org/10.1016/j.bpj.2011.07.026
  128. Efficient energy transfer in light-harvesting systems, III: The influence of the eighth bacteriochlorophyll on the dynamics and efficiency in FMO. J. Moix, J. Wu, P. Huo, D. Coker, and J. Cao, J. Phys. Chem. Lett. 2, 3045-3052 (2011)   https://doi.org/10.1021/jz201259v
  129. Stochastic resonance of quantum discord. C. K. Lee, L. C. Kwek, and J. Cao, Phys. Rev. A 84, 062113/1-5 (2011)   https://doi.org/10.1103/PhysRevA.84.062113
  130. Generalized Michaelis-Menten equation for conformation-modulated monomeric enzymes. J. Wu and J. Cao, Adv. Chem. Phys. 146, 329-365 (2011)   https://doi.org/10.1002/9781118131374.ch12

  131. 2010

  132. Noise-induced dynamic symmetry breaking and stochastic transitions in ABA molecules: II. Symmetric-antisymmetric normal mode switching. M. Kryvohuz and J. Cao, Chem. Phys. 370, 258-269 (2010) [feature article]   https://doi.org/10.1016/j.chemphys.2010.02.024
  133. Noise-induced dynamic symmetry breaking and stochastic transitions in ABA molecules: I. Classification of vibrational modes. M. Kryvohuz and J. Cao, J. Phys. Chem. B 114(19), 6549-6560 (2010)   https://doi.org/10.1021/jp102675y
  134. Optimal efficiency of self-assembling light-harvesting arrays. J. Kim and J. Cao, J. Phys. Chem. B 114, 16189-16197 (2010)   https://doi.org/10.1021/jp106838k
  135. Efficient energy transfer in light-harvesting systems, I: Optimal temperature, reorganization energy and spatial-temporal correlations. J. Wu, F. Liu, Y. Shen, J. Cao, and R. J. Silbey, New J. Phys. 12, 105012/1-17 (2010)   https://doi.org/10.1088/1367-2630/12/10/105012

  136. 2009

  137. The influence of dissipation on the quantum-classical correspondence: Stability of stochastic trajectories. M. Kryvohuz and J. Cao, J. Chem. Phys. 130(23), 234107/1-10 (2009)   https://doi.org/10.1063/1.3154142
  138. Optimization of exciton trapping in energy transfer processes. J. Cao and R. J. Silbey, J. Phys. Chem. A 113(50), 13825-13838 (2009) [feature article] https://doi.org/10.1021/jp9032589
  139. Width of phonon sidebands in the Brownian oscillator model. J. Ye, Y. Zhao, N. Ng, and J. Cao, J. Phys. Chem. B 113, 5897-5904 (2009)   https://doi.org/10.1021/jp809425g

  140. 2008

  141. Analysis of the Entire Sequence of a Single Photon Experiment on a Flavin Protein. J. Witkoskie and J. Cao, J. Phys. Chem. B 112(19), 5988-5996 (2008)   https://doi.org/10.1021/jp075980p
  142. Generic schemes for single-molecule kinetics: 1: Self-consistent pathway solutions for renewal processes. J. Cao and R. J. Silbey, J. Phys. Chem. B 112, 12867-12880 (2008)   https://doi.org/10.1021/jp803347m
  143. Memory effects in single-molecule time series. J. Cao, Theory and Evaluation of Single-molecule Signals. Ed. E. Barkai, F. L. H. Brown, M. Orrit, and H. Yang. Singapore: World Scientific, p245 (2008)
  144. Suppression of photon-echo as a signature of chaos. M. Kryvohuz, J. Cao and S. Mukamel, J. Phys. Chem. B 112, 15999-16007 (2008)   https://doi.org/10.1021/jp804604h

  145. 2007

  146. Polarization selectivity of third-order and fifth-order Raman spectroscopies in liquids and solids. J. Wu, J. Cao and J. Fourkas, J. Phys. Chem. A 111(38), 9627-9631 (2007)   https://doi.org/10.1021/jp074716t
  147. On the thermodynamics of the liquid-solid transition in a small cluster. A. Zhukov, A.Kraynyukova and J. Cao, Phys. Lett. A 364(3-4), 329-334 (2007)   https://doi.org/10.1016/j.physleta.2006.12.004
  148. Extracting the number of quantum dots in a microenvironment from ensemble fluorescence intensity fluctuations. I. Chung, J. Witkoskie, J. Zimmer, J. Cao and M. Bawendi, Phys. Rev. B 75, 045311/1-6 (2007)   https://doi.org/10.1103/PhysRevB.75.045311

  149. 2006

  150. Classical divergence of nonlinear response functions. M. Kryvohuz and J. Cao, Phys. Rev. Lett. 96, 030403/1-4 (2006)   https://doi.org/10.1103/PhysRevLett.96.030403
  151. Description of the fluorescence intensity time trace of collections of CdSe nanocrystal quantum dots based on single quantum dot fluorescence blinking statistics. I. Chung, J. Witkoskie, J. Cao and M. Bawendi, Phys. Rev. E 73, 011106/1-7 (2006)   https://doi.org/10.1103/PhysRevE.73.011106
  152. Ground-state shapes and structures of colloidal domains. J. Wu and J. Cao, Physica A 371(2), 249-255 (2006)   https://doi.org/10.1016/j.physa.2006.05.026
  153. Kinetic theory of non-hamiltonian statistical ensembles. A. V. Zhukov and J. Cao, Condens. Matter Phys. 9, 637-643 (2006)   http://dspace.nbuv.gov.ua/handle/123456789/121375
  154. Testing for renewal and detailed balance violations in single-molecule blinking processes. J. Witkoskie and J. Cao, J. Phys. Chem. B, 110(38), 19009-19017 (2006)   https://doi.org/10.1021/jp061471w
  155. Correlations in single molecule photon statistics: Renewal indicator. J. Cao, J. Phys. Chem. B, 110(38), 19040-19043 (2006)   https://doi.org/10.1021/jp061302b
  156. Aging correlation functions of the interrupted fractional Fokker-Planck propagator. J. Witkoskie and J. Cao, J. Chem. Phys. 125(24), 244511/1-5 (2006)   https://doi.org/10.1063/1.2403874

  157. 2005

  158. Quantum recurrence from a semiclassical resummation. M. Kryvohuz and J. Cao, Chem. Phys. 322, 41-45 (2005)   https://doi.org/10.1016/j.chemphys.2005.07.021
  159. Stability analysis of three-dimensional colloidal domains: Quadratic fluctuations. J. Wu and J. Cao, J. Phys. Chem. B 109(45), 21342-21349 (2005)   https://doi.org/10.1021/jp0524431
  160. Quantum-classical correspondence in response theory. M. Kryvohuz and J. Cao, Phys. Rev. Lett. 95, 180405/1-4 (2005)   https://doi.org/10.1103/PhysRevLett.95.180405
  161. High-order mode-coupling theory for the colloidal glass transition. J. Wu and J. Cao, Phys. Rev. Lett. 95, 078301/1-4 (2005)   https://doi.org/10.1103/PhysRevLett.95.078301
  162. Stationary phase evaluations of quantum rate constants. S. Yang and J. Cao, J. Chem. Phys. 122(9), 094108/1-10 (2005)   https://doi.org/10.1063/1.1856461
  163. Phase and orientational ordering of A-B-A tri-block co-polymers guest in a quenched host of low molecular weight rod molecules. L. Gutman, J. Cao, T. Swager, and E. Thomas, Chem. Phys. Lett. 408(1-3), 139-144 (2005)   https://doi.org/10.1016/j.cplett.2005.03.151
  164. Nondivergent classical response functions from uncertainty principle: Quasiperiodic systems. M. Kryvohuz and J. Cao, J. Chem. Phys. 122(2), 024109/1-17 (2005)   https://doi.org/10.1063/1.1827212
  165. Low-temperature thermal transport in nanowires. A. Zhukov, S.Yang, and J. Cao, JETP Lett. 81(4), 190-194 (2005)   https://doi.org/10.1134/1.1914879

  166. 2004

  167. Structural arrest transitions in fluids described by two Yukawa potentials. J. Wu, Y. Liu, W. Chen, J. Cao, and S. Chen, Phys. Rev. E 70, 050401/1-4 (2004)   https://doi.org/10.1103/PhysRevE.70.050401"
  168. A semiclassical study of wave packet dynamics in anharmonic potentials. S. Yang, J. Cao, and R. W. Field, J. Chem. Phys. 121(14), 6599-6607 (2004)   https://doi.org/10.1063/1.1791131"
  169. Nonperturbative vibrational energy relaxation effects on vibrational line-shapes. S. Yang, J. Shao, and J. Cao, J. Chem. Phys. 121(22), 11250-11271 (2004)   https://doi.org/10.1063/1.1812748
  170. Theoretical analysis and computer simulation of fluorescence lifetime measurements. II. Contour length dependence of single polymers. S. Yang and J. Cao, J. Chem. Phys. 121(1), 572-581 (2004)   https://doi.org/10.1063/1.1756578
  171. Theoretical analysis and computer simulation of fluorescence lifetime measurements. I. Kinetic regimes and experimental time scales. S. Yang and J. Cao, J. Chem. Phys. 121(1), 562-571 (2004)   https://doi.org/10.1063/1.1756577
  172. Single molecule kinetics. II. Numerical Bayesian approach. J. Witkoskie and J. Cao, J. Chem. Phys. 121(13), 6373-6379 (2004)   https://doi.org/10.1063/1.1785784
  173. Single molecule kinetics. I. Theoretical analysis of indicators. J. Witkoskie and J. Cao, J. Chem. Phys. 121(13), 6361-6372 (2004)   https://doi.org/10.1063/1.1785783
  174. Phase and orientational ordering of low molecular weight rod molecules in a quenched liquid crystalline polymer matrix with mobile side chains. L. Gutman, J. Cao, and T. Swager, J. Chem. Phys. 120(23), 11316-11326 (2004)   https://doi.org/10.1063/1.1739211
  175. Orientational ordering of short LC rods in an anisotropic liquid crystalline polymer glass. L. Gutman, J. Cao, T. Swager, and E. Thomas, Chem. Phys. Lett. 389(1-3), 198-203 (2004)   https://doi.org/10.1016/j.cplett.2004.02.086
  176. Scaling and universality of inherent structure simulations. J. Witkoskie and J. Cao, Phys. Rev. E 69(6), 061108/1-10 (2004)   https://doi.org/10.1103/PhysRevE.69.061108
  177. East model: Basis set expansion, mode coupling, and irreducible memory kernels. J. Wu and J. Cao, J. Phys. Chem. B 108(21), 6796-6808 (2004)   https://doi.org/10.1021/jp037579i
  178. Basis set study of classical rotor lattice dynamics. J. Witkoskie, J. Wu, and J. Cao, J. Chem. Phys. 120(12), 5695-5708 (2004)   https://doi.org/10.1063/1.1649735

  179. 2003

  180. First-principle path integral study of DNA under hydrodynamic flows. S. Yang, J. Witkoskie and J. Cao, Chem. Phys. Lett. 377(3-4), 399-405 (2003)   https://doi.org/10.1016/S0009-2614(03)01135-7
  181. Gaussian factorization of hydrodynamic correlation functions and mode-coupling memory kernels. J. Wu and J. Cao, Phys. Rev. E 67(6), 061116/1-12 (2003)   https://doi.org/10.1103/PhysRevE.67.061116

  182. 2002

  183. Brownian motion in dynamically disordered media. J. Witkoskie, S. Yang, and J. Cao, Phys. Rev. E 66(5), 051111/1-15 (2002)   https://doi.org/10.1103/PhysRevE.66.051111
  184. Single-molecule dynamics of semiflexible Gaussian chains. S. Yang, J. Witkoskie, and J. Cao, J. Chem. Phys. 117(24), 11010-11023 (2002)   https://doi.org/10.1063/1.1521156
  185. Direct measurements of memory effects in single-molecule kinetics. S. Yang and J. Cao, J. Chem. Phys. 117(24), 10996-11009 (2002)   https://doi.org/10.1063/1.1521155
  186. On the temperature dependence of molecular line shapes due to linearly coupled phonon bands. S. Jang, J. Cao, and R. Silbey, J. Phys. Chem. B 106(33), 8313-8317 (2002)   https://doi.org/10.1021/jp0208440
  187. Semiclassical modeling of Rydberg wave-packet dynamics in diatomic molecules: Averge decoupling theory. S. Altunata, J. Cao, and R. W. Field, Phys. Rev. A 65(5), 053415/1-16 (2002)   https://doi.org/10.1103/PhysRevA.65.053415
  188. Fourth-order quantum master equation and its Markovian bath limit. S. Jang, J. Cao, and R. Silbey, J. Chem. Phys. 116(7), 2705-2717 (2002)   https://doi.org/10.1063/1.1445105
  189. Spectral analysis of electron transfer kinetics. II. Y. Jung and J. Cao, J. Chem. Phys. 117(8), 3822-3836 (2002)   https://doi.org/10.1063/1.1491241
  190. Calculations of nonlinear spectra of liquid Xe. I. Third-order Raman response. J. Cao, J. Wu and S. Yang, J. Chem. Phys. 116(9), 3739-3759 (2002)   https://doi.org/10.1063/1.1445745
  191. Calculations of nonlinear spectra of liquid Xe. II. Fifth-order Raman response. J. Cao, J. Wu, and S. Yang, J. Chem. Phys. 116(9), 3760-3776 (2002)   https://doi.org/10.1063/1.1445746
  192. Optimal quantum control in dissipative environments: General formalism and perturbative limits. S. Jang and J. Cao, Laser Control and Manipulation of Molecules. Ed. A. D. Bandrauk, Y. Fujimura, and R. J. Gordon. Washington DC: American Chemical Society(2002)

  193. 2001

  194. Nonadiabatic instanton calculation of multistate electron transfer reaction rate: Interference effects in three and four states systems. S. Jang and J. Cao, J. Chem. Phys. 114(22), 9959-9968 (2001)   https://doi.org/10.1063/1.1371262
  195. Two-event echos in single-molecule kinetics: A signature of conformational fluctuations. S. Yang and J. Cao, J. Phys. Chem. B 105(28), 6536-6549 (2001)   https://doi.org/10.1021/jp004349k
  196. Linear and nonlinear response functions of the Morse oscillator: Classical divergence and the uncertainty principle. J. Wu and J. Cao, J. Chem. Phys. 115(12), 5381-5391 (2001)   https://doi.org/10.1063/1.1389840
  197. Single molecule waiting time distribution functions in quantum processes. J. Cao, J. Chem. Phys. 114(12), 5137-5140 (2001)   https://doi.org/10.1063/1.1342217
  198. Single molecule tracking of heterogeneous diffusion. J. Cao, Phys. Rev. E 63(4), 041101/1-7 (2001)   https://doi.org/10.1103/PhysRevE.63.041101

  199. 2000

  200. Event-averaged measurements of single-molecule kinetics. J. Cao, Chem. Phys. Lett. 327(1-2), 38-44 (2000)   https://doi.org/10.1016/S0009-2614(00)00809-5
  201. Quantum coherence in nonlinear optical processes: Theory and possible application to control of chemical reaction and quantum computation. J. Cao, J. Lumin. 87-89, 30-34 (2000)   https://doi.org/10.1016/S0022-2313(99)00210-0
  202. Molecular π pulses: Population inversion with positively chirped short pulses. J. Cao, C. J. Bardeen, and K. R. Wilson, J. Chem. Phys. 113(5), 1898-1904 (2000)   https://doi.org/10.1063/1.481993
  203. Spectral analysis of electron transfer kinetics. I. Symmetric reactions. J. Cao and Y. Jung, J. Chem. Phys. 112(10), 4716-4722 (2000)   https://doi.org/10.1063/1.481027
  204. Effects of bath relaxation on dissipative two-state dynamics. J. Cao, J. Chem. Phys. 112(15), 6719-6724 (2000)   https://doi.org/10.1063/1.481247

  205. 1999

  206. Electronic Coherence in Mixed-Valence Systems: Spectral analysis. Y. Jung, R. Silbey, and J. Cao, J. Phys. Chem. A 103(47), 9460-9468 (1999)   https://doi.org/10.1021/jp9917594
  207. Steepest descent path study of electron-transfer reactions. J. Cao, J. Phys. Chem. A 103(49), 10571-10579 (1999)   https://doi.org/10.1021/jp992066q
  208. An adiabatic picture for electron transfer in mixed-valence systems. J. Cao, Chem. Phys. Lett. 312(5-6), 606-612 (1999)   https://doi.org/10.1016/S0009-2614(99)00840-4
  209. Using time-dependent rate equations to describe chirped pulse excitation in condensed phases. C. J. Bardeen, J. Cao, F. L. H. Brown, and K. R. Wilson, Chem. Phys. Lett. 302(5-6), 405-410 (1999)   https://doi.org/10.1016/S0009-2614(99)00175-X
  210. Ultrafast extended x-ray absorption fine structure (EXAFS)-theoretical considerations. F. L. H. Brown, K. R. Wilson, and J. Cao, J. Chem. Phys. 111(14), 6238-6246 (1999)   https://doi.org/10.1063/1.479928
  211. A unified approach for calculating quantum rate constants. J. Cao, Path Intregals from peV to TeV: 50 years after Feynman's Paper. Ed. R. Casalbuoni, R. Giachetti, V. Tognetti, R. Vaia, and P. Verrucchi. Singapore: World Scientific (1999)

  212. 1998

  213. Molecular "Π Pulse" for Total Inversion of Electronic State Population. J. Cao, C. J. Bardeen, K. R. Wilson, Phys. Rev. Lett. 80(7), 1406-1409 (1998)   https://doi.org/10.1103/PhysRevLett.80.1406
  214. Ultrafast X-ray diffraction theory: Time-scale considerations. J. Cao and K. R. Wilson, Proceedings of SPIE 3273, 219-224 (1998)   https://doi.org/10.1117/12.306131
  215. Ultrafast X-ray diffraction theory. J. Cao and K. R. Wilson, J. Phys. Chem. A 102(47), 9523-9530 (1998)   https://doi.org/10.1021/jp982054p
  216. Intrapulse dynamical effects in multiphoton processes: Theoretical analysis. J. Cao, J. Che, and K. R. Wilson, J. Phys. Chem. A 102(23), 4284-4290 (1998)   https://doi.org/10.1021/jp973097t
  217. Chirped pulse enhancement of multiphoton absorption in molecular iodine. V. V. Yakovlev, C. J. Bardeen, J. Che, J. Cao and K. R. Wilson, J. Chem. Phys. 108(6), 2309-2313 (1998)   https://doi.org/10.1063/1.475615

  218. 1997

  219. Ultrafast x-ray and electron diffraction: Theoretical considerations. M. Ben-Nun, J. Cao, and K. R. Wilson, J. Phys. Chem. A 101(47), 8743-8761 (1997)   https://doi.org/10.1021/jp971764c
  220. Optimal pump-dump control: Linearization and symmetry relation. Y. Yan, J. Cao, and Z. Shen, J. Chem. Phys. 107(9), 3471-3477 (1997)   https://doi.org/10.1063/1.474686
  221. A phase-space study of Bloch-Redfield theory. J. Cao, J. Chem. Phys. 107(8), 3204-3209 (1997)   https://doi.org/10.1063/1.474670
  222. Detecting wave packet motion in pump-probe experiments: Theoretical analysis. J. Cao and K. R. Wilson, J. Chem. Phys. 106(12), 5062-5072 (1997)   https://doi.org/10.1063/1.473552
  223. Quantum control of dissipative systems: Exact solutions. J. Cao, M. Messina, and K. R. Wilson, J. Chem. Phys. 106(12), 5239-5248 (1997)   https://doi.org/10.1063/1.473522
  224. Linear theory for optimal control of molecular wave packets. J. Cao and K. R. Wilson, Phys. Rev. A 55(6), 4477-4482 (1997)   https://doi.org/10.1103/PhysRevA.55.4477
  225. A simple physical picture for quantum control of wave packet localization. J. Cao and K. R. Wilson, J. Chem. Phys. 107(5), 1441-1450 (1997)   https://doi.org/10.1063/1.475151
  226. A unified framework for quantum activated rate processes. II. The nonadiabatic limit. J. Cao and G. A. Voth, J. Chem. Phys. 106(5), 1769-1779 (1997)   https://doi.org/10.1063/1.474123

  227. 1996

  228. A unified framework for quantum activated rate processes. I. General theory. J. Cao and G. A. Voth, J. Chem. Phys. 105(16), 6856-6870 (1996)   https://doi.org/10.1063/1.471980
  229. A theory for the quantum activated rate constant in dissipative systems. J. Cao and G. A. Voth, Chem. Phys. Lett. 261(1-2), 111-116 (1996)   https://doi.org/10.1016/0009-2614(96)00940-2
  230. Semiclassical approximations to quantum dynamical time correlation functions. J. Cao and G. A. Voth, J. Chem. Phys. 104(1), 273-285 (1996)   https://doi.org/10.1063/1.470898
  231. A novel method for simulating quantum dissipative systems. J. Cao, L. W. Ungar, and G. A. Voth, J. Chem. Phys. 104(11), 4189-4197 (1996)   https://doi.org/10.1063/1.471230
  232. Adiabatic path integral molecular dynamics methods. II. Algorithms. J. Cao and G. J. Martyna, J. Chem. Phys. 104(5), 2028-2035 (1996)   https://doi.org/10.1063/1.470959

  233. 1995

  234. On the Feynman path centroid density as a phase space distribution in quantum statistical mechanics. R. Hernandez, J. Cao, and G. A. Voth, J. Chem. Phys. 103(12), 5018-5026 (1995)   https://doi.org/10.1063/1.470588
  235. The computation of electron transfer rates: The nonadiabatic instanton solution. J. Cao, C. Minichino, and G. A. Voth, J. Chem. Phys. 103(4), 1391-1399. (1995)   https://doi.org/10.1063/1.469762
  236. A theory for time correlation functions in liquids. J. Cao and G. A. Voth, J. Chem. Phys. 103(10), 4211-4220 (1995)   https://doi.org/10.1063/1.470660
  237. Modeling physical systems by effective harmonic oscillators: The optimized quadratic approximation. J. Cao and G. A.Voth, J. Chem. Phys. 102(8), 3337-3348 (1995)   https://doi.org/10.1063/1.469207
  238. A scaling and mapping theory for excess electrons in simple fluids. J. Cao and B. J. Berne, J. Chem. Phys. 102(1), 432-436 (1995)   https://doi.org/10.1063/1.469420

  239. 1994

  240. The formulation of quantum statistical mechanics based on the Feynman path centroid density. V. Quantum instantaneous normal mode theory of liquids. J. Cao and G. A. Voth, J. Chem. Phys. 101(7), 6184-6192 (1994)   https://doi.org/10.1063/1.468400
  241. The formulation of quantum statistical mechanics based on the Feynman path centroid density. IV. Algorithms for centroid molecular dynamics. J. Cao and G. A. Voth, J. Chem. Phys. 101(7), 6168-6183. (1994)   https://doi.org/10.1063/1.468399
  242. The formulation of quantum statistical mechanics based on the Feynman path centroid density. III. Phase space formalism and analysis of centroid molecular dynamics. J. Cao and G. A. Voth, J. Chem. Phys. 101(7), 6157-6167 (1994)   https://doi.org/10.1063/1.468503
  243. The formulation of quantum statistical mechanics based on the Feynman path centroid density. II. Dynamical properties. J. Cao and G. A. Voth, J. Chem. Phys. 100(7), 5106-5118 (1994)   https://doi.org/10.1063/1.467176
  244. The formulation of quantum statistical mechanics based on the Feynman path centroid density. I. Equilibrium properties. J. Cao and G. A. Voth, J. Chem. Phys. 100, 5093-5105 (1994)   https://doi.org/10.1063/1.467175
  245. A semiclassical reactive flux method for the calculation of condensed phase activated rate constants. D. E. Sagnella, J. Cao and G. A. Voth, Chem. Phys. 180(2-3), 167-180 (1994)   https://doi.org/10.1016/0301-0104(93)E0419-V
  246. Winding-number effect in path-integral simulations. J. Cao, Phys. Rev. E 49(1), 882-889 (1994)   https://doi.org/10.1103/PhysRevE.49.882

  247. 1993

  248. A new perspective on quantum time correlation functions. J. Cao and G. A. Voth, J. Chem. Phys. 99(12), 10070-10073. (1993)   https://doi.org/10.1063/1.465512
  249. Theory and simulation of polar and nonpolar polarizable fluids. J. Cao and B. J. Berne, J. Chem. Phys. 99(9), 6998-7011 (1993)   https://doi.org/10.1063/1.465446
  250. Theory of polarizable liquid crystals: Optical birefringence. J. Cao and B. J. Berne, J. Chem. Phys. 99(3), 2213-2220 (1993)   https://doi.org/10.1063/1.466200
  251. A Born-Oppenheimer approximation for path integrals with an application to electron solvation in polarizable fluids. J. Cao and B. J. Berne, J. Chem. Phys. 99(4), 2902-2916 (1993)   https://doi.org/10.1063/1.465198

  252. 1992

  253. Many-body dispersion forces of polarizable clusters and liquids. J. Cao and B. J. Berne, J. Chem. Phys. 97(11), 8628-8636 (1992)   https://doi.org/10.1063/1.463381
  254. A new quantum propagator for hard sphere and cavity systems. J. Cao and B. J. Berne, J. Chem. Phys. 97(4), 2382-2385 (1992)   https://doi.org/10.1063/1.463076

  255. 1990

  256. Low-temperature variational approximation for the Feynman quantum propagator and its application to the simulation of quantum systems. J. Cao and B. J. Berne, J. Chem. Phys. 92(12), 7531-7539 (1990)   https://doi.org/10.1063/1.458189
  257. Monte Carlo methods for accelerating barrier crossing: Anti-force-bias and variable step algorithms. J. Cao and B. J. Berne, J. Chem. Phys. 92(3), 1980-1985 (1990)   https://doi.org/10.1063/1.458029
  258. Linear theory of superradiance in a free-electron laser. S. Cai, J. Cao and A. Bhattacharjee, Phys. Rev. A 42(7), 4120-4126 (1990)   https://doi.org/10.1103/PhysRevA.42.4120

  259. 1989

  260. On energy estimators in path integral Monte Carlo simulations: Dependence of accuracy on algorithm. J. Cao and B. J. Berne, J. Chem. Phys. 91(10), 6359-6366. (1989)   https://doi.org/10.1063/1.457403

Accessibility