Preprint

  1. Can natural sunlight induce coherent exciton dynamics? J. Olsina, A. G. Dijkstra, C. Wang, and J. Cao, arXiv:1408.5385  
  2. Efficiency at maximum power of a quantum Carnot engine with temperature tunable baths. J. Liu, C.-Y. Hsieh, and J. Cao, arXiv:1710:06565  

  3. 2021

  4. Quantum Effects in Chemical Reactions under Polaritonic Vibrational Strong Coupling P.-Y. Yang and J. Cao, J. Phys. Chem. Lett. 12, 9531–9538 (2021).   https://doi.org/10.1103/PhysRevLett.127.047402
  5. Universal scalings in two-dimensional anisotropic dipolar excitonic systems. C. Chuang and J. Cao, Phys. Rev. Lett. 127(4), 047402/1-6 (2021).   https://doi.org/10.1103/PhysRevLett.127.047402
  6. Understanding the Optimal Cooperativity of Human Glucokinase: Kinetic Resonance in Nonequilibrium Conformational Fluctuations. W. Mu, J. Kong and J. Cao, J. Phys. Chem. Lett. 12, 2900-2904 (2021).   https://doi.org/10.1021/acs.jpclett.1c00438
  7. Dynamical Symmetries and Symmetry-Protected Selection Rules in Periodically Driven Quantum Systems. G. Engelhardt and J. Cao, Phys. Rev. Lett. 126, 090601/1-7 (2021).   https://dx.doi.org/10.1103/PhysRevLett.126.090601
  8. 2020

  9. Steady-State Analysis of Light-harvesting Energy Transfer Driven by Incoherent Light: From Dimers to Networks. P.-Y. Yang and J. Cao, J. Phys. Chem. Lett. 11, 7204-7211 (2020).   https://dx.doi.org/10.1021/acs.jpclett.0c01648
  10. Absorption and Circular Dichroism Spectra of Molecular Aggregates with the Full Cumulant Expansion. L. Cupellini, F. Lipparini, and J. Cao, J. Phys. Chem. B 124, 8610-8617 (2020).   https://dx.doi.org/10.1021/acs.jpcb.0c05180
  11. Magnetic field induced symmetry breaking in nonequilibrium quantum networks. J. Thingna, D. Manzano, and J. Cao, New J. Phys. 22, 083026/1-12 (2020).   https://doi.org/10.1088/1367-2630/aba0e4
  12. Unusual Transport Properties with Noncommutative System−Bath Coupling Operators. C. Duan, C.-Y. Hsieh, J. Liu, J. Wu, and Jianshu Cao, J. Phys. Chem. Lett. 11(10), 4080-4085 (2020).   https://dx.doi.org/10.1021/acs.jpclett.0c00985
  13. The stability of spherocyte membranes: Theoretical study. W. Mu, Z. Ou-Yang, and J. Cao, EPL (Europhysics Letters) 128(3), 38001/1-7 (2020).   https://doi.org/10.1209/0295-5075/128/38001
  14. Temperature-Induced Catch-Slip to Slip Bond Transit in Plasmodium falciparum-Infected Erythrocytes. Y. B. Lim, J. Thingna, F. Kong, M. Dao, J. Cao, and C. T. Lim, Biophysical J. 118(1), 105-116 (2020).   https://doi.org/10.1016/j.bpj.2019.11.016
  15. Quantum Biology Revisited. J. Cao, R. J. Cogdell, D. F. Coker, H.-G. Duan, J. Hauer, U. Kleinekathöfer, T. L. C. Jansen, T. Mančal, R. J. Dwayne Miller, J. P. Ogilvie, V. I. Prokhorenko, T. Renger, H.-S. Tan, R. Tempelaar, M Thorwart, E. Thyrhaug, S. Westenhoff, and D. Zigmantas, Science Advances 6(14), 1-11 (2020).   https://dx.doi.org/10.1126/sciadv.aaz4888
  16. 2019

  17. Correlative Dark-Field and Photoluminescence Spectroscopy of Individual Plasmon-Molecule Hybrid Nanostructures in a Strong Coupling Regime. M. Wersäll, B. Munkhbat, D. Baranov, F. Herrera, J. Cao, T. J. Antosiewicz and T. Shegai, ACS Photonics 6(10), 2570-2576 (2019).   https://doi.org/10.1021/acsphotonics.9b01079
  18. Generalized Kasha’s Model: T-Dependent Spectroscopy Reveals Short-Range Structures of 2D Excitonic Systems. C. Chuang, D. I. G.Bennett, J. R. Caram, Aspuru-Guzik, M. G. Bawendi and J. Cao, Chem. 5(12), 3135-3150 (2019).   https://doi.org/10.1016/j.chempr.2019.08.013
  19. A Nonequilibrium Variational Polaron Theory to Study Quantum Heat Transport. C. Y. Hsieh, J. Liu, C. Duan and J. Cao, J. Phys. Chem. C 123(28), 17196-17204 (2019).   https://pubs.acs.org/doi/10.1021/acs.jpcc.9b05607
  20. Discontinuities in driven spin-boson systems due to coherent destruction of tunneling: breakdown of the Floquet-Gibbs distribution. G. Engelhardt, G. Platero and J. Cao, Phys. Rev. Lett. 123(12), 120602/1-7 (2019).   https://doi.org/10.1103/PhysRevLett.123.120602
  21. Tuning the Aharonov-Bohm effect with dephasing in nonequilibrium transport. G. Engelhardt and J. Cao, Phys. Rev. B 99(7), 075436/1-12 (2019)   https://doi.org/10.1103/PhysRevB.99.075436
  22. Design Principles for Two-Dimensional Molecular Aggregates Using Kasha's Model: Tunable Photophysics in Near and Short-Wave Infrared. A. P. Deshmukh, D. Koppel, C. Chuang, D. M. Cadena, J. Cao and J. R. Caram, J. Phys. Chem. 123(30), 18702-18710 (2019)   https://doi.org/10.1021/acs.jpcc.9b05060
  23. 2018

  24. Frequency-dependent current noise in quantum heat transfer with full counting statistics. J. Liu, C. -Y. Hsieh, C. Wu, and J. Cao, J. Chem. Phys. 148(23), 234104/1-11 (2018)   https://doi.org/10.1063/1.5025367
  25. Optimal initialization of a quantum system for an efficient coherent energy transfer. Z. Gong, Z. Tang, J. Cao and J. Wu, Chinese J. Chem. Phys. 31(4), 421-432 (2018)   https://doi.org/10.1063/1674-0068/31/cjcp1804068
  26. Interfacial thermal transport with strong system-bath coupling: A phonon delocalization effect. D. He, J. Thingna, and J. Cao, Phys. Rev. B 97(19), 195437/1-7 (2018)   https://doi.org/10.1103/PhysRevB.97.195437
  27. Photochemical control of exciton superradiance in light-harvesting nanotubes. S. Doria, T. S. Sinclair, N. D. Klein, D. I. G. Bennett, C. Chuang, F. S. Freyria, C. P. Steiner, P. Foggi, K. A. Nelson, J. Cao, A. Aspuru-Guzik, S. Lloyd, J. R. Caram, and M. G. Bawendi, ACS Nano 12(5), 4556-4564 (2018)    https://doi.org/10.1021/acsnano.8b00911
  28. Generic schemes for single-molecule kinetics. 3: Self-consistent pathway solutions for nonrenewal processes. D. E. Piephoff and J. Cao, J. Phys. Chem. B 122(17), 4601-4610 (2018)   https://doi.org/10.1021/acs.jpcb.7b10507
  29. Efficiency at maximum power of a laser quantum heat engine enhanced by noise-induced coherence. K. E. Dorfman, D. Xu, and J. Cao, Phys. Rev. E 97(4), 042120/1-8 (2018)   https://doi.org/10.1103/PhysRevE.97.042120
  30. Impact of the lipid bilayer on energy transfer kinetics in the photosynthetic protein LH2. J. I. Ogren, A. L. Tong, S. C. Gordon, A. Chenu, Y. Lu, R. E. Blankenship, J. Cao, and G. S. Schlau-Cohen, Chem. Sci. 9(12), 3095-3104 (2018)   http://dx.doi.org/10.1039/C7SC04814A
  31. A unified stochastic formulation of dissipative quantum dynamics. II. Beyond linear response of spin baths. C.-Y. Hsieh and J. Cao, J. Chem. Phys. 148(1), 014104/1-13 (2018)   https://doi.org/10.1063/1.5018726
  32. A unified stochastic formulation of dissipative quantum dynamics. I. Generalized hierarchical equations. C.-Y. Hsieh and J. Cao, J. Chem. Phys. 148(1), 014103/1-14 (2018)   https://doi.org/10.1063/1.5018725
  33. Nonadiabatic dynamics via the symmetrical quasi-classical method in the presence of anharmonicity. A. Kananenka, C.-Y. Hsieh, J. Cao, and E. Geva, J. Phys. Chem. Lett. 9(2), 319-326 (2018)   https://doi.org/10.1021/acs.jpclett.7b03002
  34. 2017

  35. Initial system-environment correlations via the transfer tensor method. M. Buser, J. Cerrillo, G. Schaller, and J. Cao, Phys. Rev. A 96(6), 062122/1-8 (2017)   https://doi.org/10.1103/PhysRevA.96.062122
  36. Light adaptation in phycobilisome antennas: Influence on the rod length and structural arrangement. A. Chenu, N. Karen, Y. Paltiel, R. Nevo, Z. Reich, and J. Cao, J. Phys. Chem. B 121(39), 9196-9202 (2017)   https://doi.org/10.1021/acs.jpcb.7b07781
  37. Graphene oxide inhibits malaria parasite invasion and delays parasitic growth in vitro. Kenry, Y. B. Lim, M. H. Nai, J. Cao, K. P. Loh, and C. T. Lim, Nanoscale 9(37), 14065-14073 (2017)   http://dx.doi.org/10.1039/C7NR06007F
  38. Generic schemes for single-molecule kinetics 2: Information content of the Poisson indicator. T. Avila, D. E. Piephoff, and J. Cao, J. Phys. Chem. B 121(33), 7750-7760 (2017)   https://doi.org/10.1021/acs.jpcb.7b01516
  39. Conformational nonequilibrium enzyme kinetics: Generalized Michaelis−Menten equation. D. E. Piephoff, J. Wu, and J. Cao, J. Phys. Chem. Lett. 8(15), 3619-3623 (2017)   https://doi.org/10.1021/acs.jpclett.7b01210
  40. Single molecule and multiple bond characterization of catch bond associated cytoadhesion in malaria. Y. B. Lim, J. Thingna, J. Cao, and C. T. Lim, Sci. Rep. 7, 4028/1-11 (2017)   https://doi.org/10.1038/s41598-017-04352-x
  41. Zero-temperature localization in a sub-Ohmic spin-boson model investigated by an extended hierarchy equation of motion. C. Duan, Z. Tang, J. Cao, and J. Wu, Phys. Rev. B 95(21), 214308/1-8 (2017)   https://doi.org/10.1103/PhysRevB.95.214308
  42. Quantum simulation of generic many-body open system dynamics using classical noise. A. Chenu, M. Beau, J. Cao, and A. del Campo, Phys. Rev. Lett. 118(14), 140403/1-6 (2017)   https://doi.org/10.1103/PhysRevLett.118.140403
  43. Expression dynamics and physiologically relevant functional study of STEVOR in asexual stages of Plasmodium falciparum infection. H. Singh, K. Madnani, Y. B. Lim, J. Cao, P. R. Preiser, and C. T. Lim, Cell. Microbiol. 19(6), e12715/1-11 (2017)   https://doi.org/10.1111/cmi.12715
  44. Unifying quantum heat transfer in a nonequilibrium spin-boson model with full counting statistics. C. Wang, J. Ren, and J. Cao, Phys. Rev. A 95(2), 023610/1-10 (2017)   https://doi.org/10.1103/PhysRevA.95.023610
  45. Construction of multichromophoric spectra from monomer data: Applications to resonant energy transfer. A. Chenu and J. Cao, Phys. Rev. Lett. 118(1), 013001/1-6 (2017)   https://doi.org/10.1103/PhysRevLett.118.013001
  46. 2016

  47. Accurate long-time mixed quantum-classical Liouville dynamics via the transfer tensor method. A. A. Kananenka, C.-Y. Hsieh, J. Cao, and E. Geva, J. Phys. Chem. Lett. 7(23), 4809-4814 (2016)   https://doi.org/10.1021/acs.jpclett.6b02389
  48. tRNA-mediated Codon-biased Translation in Mycobacterial Hypoxic Persistence. Y. H. Chionh, M. McBee, I. Babu, F. Hia, W. Lin, W. Zhao, J. Cao, A. Dziergowska, A. Malkiewicz, T. Begley, S. Alonso, and P. Dedon, Nat. Comm. 7. 13302/1-12 (2016)   https://doi.org/10.1038/ncomms13302
  49. The effects of cell asynchrony on gene expression levels: Analysis and application to Plasmodium falciparum. W. Zhao, J. Dauwels, and J. Cao, IEEE J. Biomed. Health Inform. 19(4), 1301-1307 (2016)   https://doi.org/10.1109/JBHI.2015.2434499
  50. Dynamical signatures of molecular symmetries in nonequilibrium quantum transport. J. Thingna, D. Manzano, and J. Cao, Sci. Rep. 6, 28027/1-11 (2016)   https://doi.org/10.1038/srep28027
  51. Quantum diffusion on molecular tubes: Universal scaling of the 1D to 2D transition. C. Chuang, C. K. Lee, J. M. Moix, J. Knoester, and J. Cao, Phys. Rev. Lett. 116(19), 196803/1-6 (2016)   https://doi.org/10.1103/PhysRevLett.116.196803
  52. Non-canonical distribution and non-equilibrium transport beyond weak system-bath coupling regime: A polaron transformation approach. D. Xu and J. Cao, Front. Phys. 11, 110308/1-17 (2016)   https://doi.org/10.1007/s11467-016-0540-2
  53. Transitions in genetic toggle switches driven by dynamic disorder in rate coefficients. H. Chen, P. Thill, and J. Cao, J. Chem. Phys. 144(17), 175104/1-8 (2016)   https://doi.org/10.1063/1.4948461
  54. Quantum transport in d-dimensional lattices. D. Manzano, C. Chuang, and J. Cao, New J. Phys. 18(4), 043044/1-10 (2016)   https://doi.org/10.1088/1367-2630/18/4/043044
  55. How two-dimensional brick layer J-aggregates differ from linear ones: Excitonic properties and line broadening mechanisms. A. G. Dijkstra, H.-G. Duan, J. Knoester, K. A. Nelson, and J. Cao, J. Chem. Phys. 144(13), 134310/1-10 (2016)   https://doi.org/10.1063/1.4944980
  56. Efficient simulation of non-Markovian system-environment interaction. R. Rosenbach, J. Cerrillo, S. F. Huelga, J. Cao, and M. B. Plenio, New J. Phys. 18(2), 023035/1-11 (2016)   http://dx.doi.org/10.1088/1367-2630/18/2/023035
  57. Polaron effects on the performance of light-harvesting systems: A quantum heat engine perspective. D. Xu, C. Wang, Y. Zhao, and J. Cao, New J. Phys. 18(2), 023003/1-14 (2016)   http://dx.doi.org/10.1088/1367-2630/18/2/023003
  58. Evolution of the single-nanocrystal photoluminescence linewidth with size and shell: Implications for exciton-phonon coupling and the optimization of spectral linewidths. J. Cui, A. P. Beyler, I. Coropceanu, L. Cleary, T. R. Avila, Y. Chen, J. M. Cordero, S. L. Heathcote, D. K. Harris, O. Chen, J. Cao, and M. G. Bawendi, Nano Lett. 16(1), 289-296 (2016)   https://doi.org/10.1021/acs.nanolett.5b03790

  59. 2015

  60. Stiffening of red blood cells induced by cytoskeleton disorders: A joint theory-experiment study. L. Lai, X. Xu, C. T. Lim, and J. Cao, Biophys. J. 109(11), 2287-2294 (2015)   https://doi.org/10.1016/j.bpj.2015.10.036
  61. Large area directed self-assembly of sub-10 nm particles with single particle positioning resolution. M. Asbahi, S. Mehraeen, F. Wang, N. Yakovlev, K. S. L. Chong, J. Cao, M. C. Tan, and J. K. W. Yang, Nano Lett. 15(9), 6066-6070 (2015)   https://doi.org/10.1021/acs.nanolett.5b02291
  62. Nonequilibrium energy transfer at nanoscale: A unified theory from weak to strong coupling. C. Wang, R. Jie, and J. Cao, Sci. Rep. 5, 11787/1-10 (2015)   https://doi.org/10.1038/srep11787
  63. Coherent quantum transport in disordered systems: A unified polaron treatment of hopping and band-like transport. C. K. Lee, J. M. Moix, and J. Cao, J. Chem. Phys. 142(16), 164103/1-7 (2015)   https://doi.org/10.1063/1.4918736
  64. Directed self-assembly of sub-10 nm particles: Role of driving forces and template geometry in packing and ordering. S. Mehraeen, M. Asbahi, F. Wang, J. K.W. Yang, J. Cao, and M. C. Tan, Langmuir 31(31), 8548-8557 (2015)   https://doi.org/10.1021/acs.langmuir.5b01696
  65. A continued fraction resummation form of bath relaxation effect in the spin-boson model. Z. Gong, Z. Tang, S. Mukamel, J. Cao, and J. Wu, J. Chem. Phys. 142(8), 084103/1-9 (2015)   https://doi.org/10.1063/1.4913198
  66. Minimal model of quantum kinetic clusters for the energy-transfer network of a light-harvesting protein complex. J. Wu, Z. Tang, Z. Gong, J. Cao, and S. Mukamel, J. Phys. Chem. Lett. 6(7), 1240-1245 (2015)   https://doi.org/10.1021/acs.jpclett.5b00227
  67. Coherent exciton dynamics in the presence of underdamped vibrations. A. G. Dijkstra, C. Wang, J. Cao, and G. R. Fleming, J. Phys. Chem. Lett. 6(4), 627-632 (2015)   https://doi.org/10.1021/jz502701u
  68. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. III. Exact stochastic path integral evaluation. J. Moix, J. Ma, and J. Cao, J. Chem. Phys. 142(9), 094108/1-9 (2015)   https://doi.org/10.1063/1.4908601
  69. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. II. Hybrid cumulant expansion. J. Ma, J. Moix, and J. Cao, J. Chem. Phys. 142(9), 094107/1-8 (2015)   https://doi.org/10.1063/1.4908600
  70. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. I. Full cumulant expansions and system-bath entanglement. J. Ma and J. Cao, J. Chem. Phys. 142(9), 094106/1-13 (2015)   https://doi.org/10.1063/1.4908599

  71. 2014

  72. Translocation of a forced polymer chain through a crowded channel. J. X. Chen, J. X. Zhu, Y. Q. Ma, and J. Cao, Europhys. Lett. 106(1), 18003/1-6 (2014)   https://doi.org/10.1209/0295-5075/106/18003
  73. Correlated local bending of a DNA double helix and its effect on DNA flexibility in the sub-persistence-length regime. X. L. Xu, B. J. R. Thio, and J. Cao, J. Phys. Chem. Lett. 5(16), 2868-2873 (2014)   https://doi.org/10.1021/jz501290b
  74. Spectrins in axonal cytoskeletons: Dynamics revealed by extensions and fluctuations. L. Lai and J. Cao, J. Chem. Phys. 141(1), 015101/1-7 (2014)   https://doi.org/10.1063/1.4885720
  75. Excitonic effects from geometric order and disorder explain broadband optical absorption in eumelanin. C. Chen, C. Chuang, J. Cao, V. Ball, D. Ruch, and M. J. Buehler, Nat. Commun. 5, 3859/1-10 (2014)   https://doi.org/10.1038/ncomms4859
  76. Template-induced structure transition in sub-10 nm self-assembling nanoparticles. M. Asbahi, S. Mehraeen, K. T. P. Lim, F. Wang, J. Cao, M. C. Tan, and J. K. W. Yang, Nano Lett. 14(5), 2642-2646 (2014)   https://doi.org/10.1021/nl5004976
  77. Scaling relations and optimization of excitonic energy transfer rates between one-dimensional molecular aggregates. C. Chuang, J. Knoester, and J. Cao, J. Phys. Chem. B 118(28), 7827-7834 (2014)   https://doi.org/10.1021/jp4124502
  78. Optimal tunneling enhances the quantum photovoltaic effect in double quantum dots. C. Wang, J. Ren, and J. Cao, New J. Phys. 16, 045019/1-16 (2014)   http://dx.doi.org/10.1088/1367-2630/16/4/045019
  79. Coherent quantum transport in disordered systems: II. Temperature dependence of carrier diffusion coefficients from the time-dependent wavepacket diffusion method. X. Zhong, Y. Zhao, and J. Cao, New J. Phys. 16, 045009/1-15 (2014)   http://dx.doi.org/10.1088/1367-2630/16/4/045009
  80. Non-Markovian dynamical maps: Numerical processing of open quantum trajectories. J. Cerrillo and J. Cao, Phys. Rev. Lett. 112(11), 110401/1-5 (2014)   https://doi.org/10.1103/PhysRevLett.112.110401
  81. Shape transition of unstrained flattest single-walled carbon nanotubes under pressure. W. Mu, J. Cao, and Z. Ou-Yang, J. Appl. Phys. 115(4), 044512/1-6 (2014)   https://doi.org/10.1063/1.4863455

  82. 2013

  83. Optimal thermal bath for robust excitation energy transfer in disordered light-harvesting complex 2 of purple bacteria. L. Cleary and J. Cao, New J. Phys. 15, 125030/1-13 (2013)   https://doi:10.1088/1367-2630/15/12/125030
  84. A hybrid stochastic hierarchy equations of motion approach to treat the low temperature dynamics of non-Markovian open quantum systems. J. M. Moix and J. Cao, J. Chem. Phys. 139(13), 134106/1-9 (2013)   https://doi.org/10.1063/1.4822043
  85. Modeling spatial correlation of DNA deformation: DNA allostery in protein binding. X. L. Xu, H. Ge, C. Gu, Y. Q. Gao, S. S. Wang, B. J. R. Thio, J. T. Hynes, X. S. Xie, and J. Cao, J. Phys. Chem. B 117(42), 13378-13387 (2013)   https://doi.org/10.1021/jp4047243
  86. Coherent quantum transport in disordered systems: I. The influence of dephasing on the transport properties and absorption spectra on one-dimensional systems. J. M. Moix, M. Khasin, and J. Cao, New J. Phys. 15, 085010/1-21 (2013)   http://dx.doi.org/10.1088/1367-2630/15/8/085010
  87. Universality of Poisson indicator and Fano factor of transport event statistics in ion channels and enzyme kinetics. S. Chaudhury, J. Cao, and N. A. Sinitsyn, J. Phys. Chem. B 117(2), 503-509 (2013)   https://doi.org/10.1021/jp3096659
  88. Optimal fold symmetry of LH2 rings on a photosynthetic membrane. L. Cleary, H. Chen, C. Chuang, R. J. Silbey, and J. Cao, Proc. Natl. Acad. Sci. USA 110(21), 8537-8542 (2013)   https://doi.org/10.1073/pnas.1218270110
  89. Generic mechanism of optimal energy transfer efficiency: A scaling theory of the mean first-passage time in exciton systems. J. Wu, R. J. Silbey, and J. Cao, Phys. Rev. Lett. 110(20), 200402/1-5 (2013)   https://doi.org/10.1103/PhysRevLett.110.200402
  90. Probing the cytoadherence of malaria infected red blood cells under flow. X. Xu, A. K. Efremov, A. Li, M. Dao, C. T. Lim, and J. Cao, PLOS ONE 8(5), e64763/1-8 (2013)   https://dx.doi.org/10.1371%2Fjournal.pone.0064763
  91. A novel construction of complex-valued Gaussian processes with arbitrary spectral densities and its application to excitation energy transfer. X. Chen, J. Cao, and R. J. Silbey, J. Chem. Phys. 138(22), 224104/1-14 (2013)   https://doi.org/10.1063/1.4808377
  92. Higher-order kinetic expansion of quantum dissipative dynamics: Mapping quantum networks to kinetic networks. J. Wu and J. Cao, J. Chem. Phys. 139(4), 044102/1-13 (2013)   https://doi.org/10.1063/1.4812781

  93. 2012

  94. Reaction event counting statistics of biopolymer reaction systems with dynamic heterogeneity. Y. R. Lim, S. J. Park, B. J. Park, J. Cao, R. J. Silbey, and J. Sung, J. Chem. Theory Comput. 8(4), 1415-1425 (2012)   https://doi.org/10.1021/ct200785q
  95. Equilibrium-reduced density matrix formulation: Influence of noise, disorder, and temperature on localization in excitonic systems. J. Moix, Y. Zhao, and J. Cao, Phys. Rev. B 85(11), 115412/1-14 (2012)   https://doi.org/10.1103/PhysRevB.85.115412
  96. Accuracy of second order perturbation theory in the polaron and variational polaron frames. C. K. Lee, J. Moix, and J. Cao, J. Chem. Phys. 136(20), 204120/1-7 (2012)   https://doi.org/10.1063/1.4722336
  97. Computational synchronization of microarray data with application to Plasmodium falciparum. W. Zhao, J. Dauwels, J. C. Niles, and J. Cao, Proteome Science 10(Suppl 1):S10 1-17 (2012)   https://doi.org/10.1186/1477-5956-10-S1-S10
  98. Excitonic energy transfer in light-harvesting complexes in purple bacteria. J. Ye, K. Sun, Y. Zhao, Y. Yu, C. K. Lee, and J. Cao, J. Chem. Phys. 136(24), 245104/1-17 (2012)   https://doi.org/10.1063/1.4729786
  99. Noncanonical statistics of a spin-boson model: Theory and exact Monte Carlo simulations. C. K. Lee, J. Cao, and J. Gong, Phys. Rev. E 86(2), 021109/1-7 (2012)   https://doi.org/10.1103/PhysRevE.86.021109
  100. Efficient energy transfer in light-harvesting systems: Quantum-classical comparison, flux network, and robustness analysis. J. Wu, F. Liu, J. Ma, R. J. Silbey, and J. Cao, J. Chem. Phys. 137, 174111/1-12 (2012)   https://doi.org/10.1063/1.4762839

  101. 2011

  102. Michaelis-Menten equation and detailed balance in enzymatic networks. J. Cao, J. Phys. Chem. B, 115(18), 5493-5498 (2011)   https://doi.org/10.1021/jp110924w
  103. Quantitative interpretation of the randomness in single enzyme turnover times. S. Yang, J. Cao, R. J. Silbey, and J. Sung, Biophys. J. 101(3), 519-524 (2011)   https://doi.org/10.1016/j.bpj.2011.06.022
  104. Bistability of cell adhesion in shear flow. A. Efremov and J. Cao, Biophys. J. 101(5), 1032-1040 (2011)   https://doi.org/10.1016/j.bpj.2011.07.026
  105. Efficient energy transfer in light-harvesting systems, III: The influence of the eighth bacteriochlorophyll on the dynamics and efficiency in FMO. J. Moix, J. Wu, P. Huo, D. Coker, and J. Cao, J. Phys. Chem. Lett. 2, 3045-3052 (2011)   https://doi.org/10.1021/jz201259v
  106. Stochastic resonance of quantum discord. C. K. Lee, L. C. Kwek, and J. Cao, Phys. Rev. A 84, 062113/1-5 (2011)   https://doi.org/10.1103/PhysRevA.84.062113
  107. Generalized Michaelis-Menten equation for conformation-modulated monomeric enzymes. J. Wu and J. Cao, Adv. Chem. Phys. 146, 329-365 (2011)   https://doi.org/10.1002/9781118131374.ch12

  108. 2010

  109. Noise-induced dynamic symmetry breaking and stochastic transitions in ABA molecules: II. Symmetric-antisymmetric normal mode switching. M. Kryvohuz and J. Cao, Chem. Phys. 370, 258-269 (2010) [feature article]   https://doi.org/10.1016/j.chemphys.2010.02.024
  110. Noise-induced dynamic symmetry breaking and stochastic transitions in ABA molecules: I. Classification of vibrational modes. M. Kryvohuz and J. Cao, J. Phys. Chem. B 114(19), 6549-6560 (2010)   https://doi.org/10.1021/jp102675y
  111. Optimal efficiency of self-assembling light-harvesting arrays. J. Kim and J. Cao, J. Phys. Chem. B 114, 16189-16197 (2010)   https://doi.org/10.1021/jp106838k
  112. Efficient energy transfer in light-harvesting systems, I: Optimal temperature, reorganization energy and spatial-temporal correlations. J. Wu, F. Liu, Y. Shen, J. Cao, and R. J. Silbey, New J. Phys. 12, 105012/1-17 (2010)   https://doi.org/10.1088/1367-2630/12/10/105012

  113. 2009

  114. The influence of dissipation on the quantum-classical correspondence: Stability of stochastic trajectories. M. Kryvohuz and J. Cao, J. Chem. Phys. 130(23), 234107/1-10 (2009)   https://doi.org/10.1063/1.3154142
  115. Optimization of exciton trapping in energy transfer processes. J. Cao and R. J. Silbey, J. Phys. Chem. A 113(50), 13825-13838 (2009) [feature article] https://doi.org/10.1021/jp9032589
  116. Width of phonon sidebands in the Brownian oscillator model. J. Ye, Y. Zhao, N. Ng, and J. Cao, J. Phys. Chem. B 113, 5897-5904 (2009)   https://doi.org/10.1021/jp809425g

  117. 2008

  118. Analysis of the Entire Sequence of a Single Photon Experiment on a Flavin Protein. J. Witkoskie and J. Cao, J. Phys. Chem. B 112(19), 5988-5996 (2008)   https://doi.org/10.1021/jp075980p
  119. Generic schemes for single-molecule kinetics: Self-consistent pathway solutions for renewal processes. J. Cao and R. J. Silbey, J. Phys. Chem. B 112, 12867-12880 (2008)   https://doi.org/10.1021/jp803347m
  120. Memory effects in single-molecule time series. J. Cao, Theory and Evaluation of Single-molecule Signals. Ed. E. Barkai, F. L. H. Brown, M. Orrit, and H. Yang. Singapore: World Scientific, p245 (2008)
  121. Suppression of photon-echo as a signature of chaos. M. Kryvohuz, J. Cao and S. Mukamel, J. Phys. Chem. B 112, 15999-16007 (2008)   https://doi.org/10.1021/jp804604h

  122. 2007

  123. Polarization selectivity of third-Order and fifth-Order Raman spectroscopies in liquids and solids. J. Wu, J. Cao and J. Fourkas, J. Phys. Chem. A 111(38), 9627-9631 (2007)   https://doi.org/10.1021/jp074716t
  124. On the thermodynamics of the liquid-solid transition in a small cluster. A. Zhukov, A.Kraynyukova and J. Cao, Phys. Lett. A 364(3-4), 329-334 (2007)   https://doi.org/10.1016/j.physleta.2006.12.004
  125. Extracting the number of quantum dots in a microenvironment from ensemble fluorescence intensity fluctuations. I. Chung, J. Witkoskie, J. Zimmer, J. Cao and M. Bawendi, Phys. Rev. B 75, 045311/1-6 (2007)   https://doi.org/10.1103/PhysRevB.75.045311

  126. 2006

  127. Classical divergence of nonlinear response functions. M. Kryvohuz and J. Cao, Phys. Rev. Lett. 96, 030403/1-4 (2006)   https://doi.org/10.1103/PhysRevLett.96.030403
  128. Description of the fluorescence intensity time trace of collections of CdSe nanocrystal quantum dots based on single quantum dot fluorescence blinking statistics. I. Chung, J. Witkoskie, J. Cao and M. Bawendi, Phys. Rev. E 73, 011106/1-7 (2006)   https://doi.org/10.1103/PhysRevE.73.011106
  129. Ground-state shapes and structures of colloidal domains. J. Wu and J. Cao, Physica A 371(2), 249-255 (2006)   https://doi.org/10.1016/j.physa.2006.05.026
  130. Kinetic theory of non-hamiltonian statistical ensembles. A. V. Zhukov and J. Cao, Condens. Matter Phys. 9, 637-643 (2006)   http://dspace.nbuv.gov.ua/handle/123456789/121375
  131. Testing for renewal and detailed balance violations in single-molecule blinking processes. J. Witkoskie and J. Cao, J. Phys. Chem. B, 110(38), 19009-19017 (2006)   https://doi.org/10.1021/jp061471w
  132. Correlations in single molecule photon statistics: Renewal indicator. J. Cao, J. Phys. Chem. B, 110(38), 19040-19043 (2006)   https://doi.org/10.1021/jp061302b
  133. Aging correlation functions of the interrupted fractional Fokker-Planck propagator. J. Witkoskie and J. Cao, J. Chem. Phys. 125(24), 244511/1-5 (2006)   https://doi.org/10.1063/1.2403874
  134. Quantum recurrence from a semiclassical resummation. M. Kryvohuz and J. Cao, Chem. Phys. 322, 41-45 (2006)   https://doi.org/10.1016/j.chemphys.2005.07.021

  135. 2005

  136. Stability analysis of three-dimensional colloidal domains: Quadratic fluctuations. J. Wu and J. Cao, J. Phys. Chem. B 109(45), 21342-21349 (2005)   https://doi.org/10.1021/jp0524431
  137. Quantum-classical correspondence in response theory. M. Kryvohuz and J. Cao, Phys. Rev. Lett. 95, 180405/1-4 (2005)   https://doi.org/10.1103/PhysRevLett.95.180405
  138. High-order mode-coupling theory for the colloidal glass transition. J. Wu and J. Cao, Phys. Rev. Lett. 95, 078301/1-4 (2005)   https://doi.org/10.1103/PhysRevLett.95.078301
  139. Stationary phase calculations of quantum rate constants. S. Yang and J. Cao, J. Chem. Phys. 122(9), 094108/1-10 (2005)   https://doi.org/10.1063/1.1856461
  140. Phase and orientational ordering of A-B-A tri-block co-polymers guest in a quenched host of low molecular weight rod molecules. L. Gutman, J. Cao, T. Swager, and E. Thomas, Chem. Phys. Lett. 408(1-3), 139-144 (2005)   https://doi.org/10.1016/j.cplett.2005.03.151
  141. Nondivergent classical response functions from uncertainty principle: Quasiperiodic systems. M. Kryvohuz and J. Cao, J. Chem. Phys. 122(2), 024109/1-17 (2005)   https://doi.org/10.1063/1.1827212
  142. Low-temperature thermal transport in nanowires. A. Zhukov, S.Yang, and J. Cao, JETP Lett. 81(4), 228-232 (2005)   https://doi.org/10.1134/1.1914879

  143. 2004

  144. Structural arrest transitions in fluids described by two Yukawa potentials. J. Wu, Y. Liu, W. Chen, J. Cao, and S. Chen, Phys. Rev. E 70, 050401/1-4 (2004)   https://doi.org/10.1103/PhysRevE.70.050401"
  145. A semiclassical study of wave packet dynamics in anharmonic potentials. S. Yang, J. Cao, and R. W. Field, J. Chem. Phys. 121(14), 6599-6607 (2004)   https://doi.org/10.1063/1.1791131"
  146. Nonperturbative vibrational energy relaxation effects on vibrational line-shapes. S. Yang, J. Shao, and J. Cao, J. Chem. Phys. 121(22), 11250-11271 (2004)   https://doi.org/10.1063/1.1812748
  147. Theoretical analysis and computer simulation of fluorescence lifetime measurements. II. Contour length dependence of single polymers. S. Yang and J. Cao, J. Chem. Phys. 121(1), 572-581 (2004)   https://doi.org/10.1063/1.1756578
  148. Theoretical analysis and computer simulation of fluorescence lifetime measurements. I. Kinetic regimes and experimental time scales. S. Yang and J. Cao, J. Chem. Phys. 121(1), 562-571 (2004)   https://doi.org/10.1063/1.1756577
  149. Single molecule kinetics. II. Numerical Bayesian approach. J. Witkoskie and J. Cao, J. Chem. Phys. 121(13), 6373-6379 (2004)   https://doi.org/10.1063/1.1785784
  150. Single molecule kinetics. I. Theoretical analysis of indicators. J. Witkoskie and J. Cao, J. Chem. Phys. 121(13), 6361-6372 (2004)   https://doi.org/10.1063/1.1785783
  151. Phase and orientational ordering of low molecular weight rod molecules in a quenched liquid crystalline polymer matrix with mobile side chains. L. Gutman, J. Cao, and T. Swager, J. Chem. Phys. 120(23), 11316-11326 (2004)   https://doi.org/10.1063/1.1739211
  152. Orientational ordering of short LC rods in an anisotropic liquid crystalline polymer glass. L. Gutman, J. Cao, T. Swager, and E. Thomas, Chem. Phys. Lett. 389(1-3), 198-203 (2004)   https://doi.org/10.1016/j.cplett.2004.02.086
  153. Scaling and universality of inherent structure simulations. J. Witkoskie and J. Cao, Phys. Rev. E 69(6), 061108/1-10 (2004)   https://doi.org/10.1103/PhysRevE.69.061108
  154. East model: Basis set expansion, mode coupling, and irreducible memory kernels. J. Wu and J. Cao, J. Phys. Chem. B 108(21), 6796-6808 (2004)   https://doi.org/10.1021/jp037579i
  155. Basis set study of classical rotor lattice dynamics. J. Witkoskie, J. Wu, and J. Cao, J. Chem. Phys. 120(12), 5695-5708 (2004)   https://doi.org/10.1063/1.1649735

  156. 2003

  157. First-principle path integral study of DNA under hydrodynamic flows. S. Yang, J. Witkoskie and J. Cao, Chem. Phys. Lett. 377(3-4), 399-405 (2003)   https://doi.org/10.1016/S0009-2614(03)01135-7
  158. Gaussian factorization of hydrodynamic correlation functions and mode-coupling memory kernels. J. Wu and J. Cao, Phys. Rev. E 67(6), 061116/1-12 (2003)   https://doi.org/10.1103/PhysRevE.67.061116

  159. 2002

  160. Brownian motion in dynamically disordered media. J. Witkoskie, S. Yang, and J. Cao, Phys. Rev. E 66(5), 051111/1-15 (2002)   https://doi.org/10.1103/PhysRevE.66.051111
  161. Single-molecule dynamics of semiflexible Gaussian chains. S. Yang, J. Witkoskie, and J. Cao, J. Chem. Phys. 117(24), 11010-11023 (2002)   https://doi.org/10.1063/1.1521156
  162. Direct measurements of memory effects in single-molecule kinetics. S. Yang and J. Cao, J. Chem. Phys. 117(24), 10996-11009 (2002)   https://doi.org/10.1063/1.1521155
  163. On the temperature dependence of molecular line shapes due to linearly coupled phonon bands. S. Jang, J. Cao, and R. Silbey, J. Phys. Chem. B 106(33), 8313-8317 (2002)   https://doi.org/10.1021/jp0208440
  164. Semiclassical modeling of Rydberg wave-packet dynamics in diatomic molecules: Averge decoupling theory. S. Altunata, J. Cao, and R. W. Field, Phys. Rev. A 65(5), 053415/1-16 (2002)   https://doi.org/10.1103/PhysRevA.65.053415
  165. Fourth-order quantum master equation and its Markovian bath limit. S. Jang, J. Cao, and R. Silbey, J. Chem. Phys. 116(7), 2705-2717 (2002)   https://doi.org/10.1063/1.1445105
  166. Spectral analysis of electron transfer kinetics. II. Y. Jung and J. Cao, J. Chem. Phys. 117(8), 3822-3836 (2002)   https://doi.org/10.1063/1.1491241
  167. Calculations of nonlinear spectra of liquid Xe. I. Third-order Raman response. J. Cao, J. Wu and S. Yang, J. Chem. Phys. 116(9), 3739-3759 (2002)   https://doi.org/10.1063/1.1445745
  168. Calculations of nonlinear spectra of liquid Xe. II. Fifth-order Raman response. J. Cao, J. Wu, and S. Yang, J. Chem. Phys. 116(9), 3760-3776 (2002)   https://doi.org/10.1063/1.1445746
  169. Optimal quantum control in dissipative environments: General formalism and perturbative limits. S. Jang and J. Cao, Laser Control and Manipulation of Molecules. Ed. A. D. Bandrauk, Y. Fujimura, and R. J. Gordon. Washington DC: American Chemical Society(2002)

  170. 2001

  171. Nonadiabatic instanton calculation of multistate electron transfer reaction rate: Interference effects in three and four states systems. S. Jang and J. Cao, J. Chem. Phys. 114(22), 9959-9968 (2001)   https://doi.org/10.1063/1.1371262
  172. Two-event echos in single-molecule kinetics: A signature of conformational fluctuations. S. Yang and J. Cao, J. Phys. Chem. B 105(28), 6536-6549 (2001)   https://doi.org/10.1021/jp004349k
  173. Linear and nonlinear response functions of the Morse oscillator: Classical divergence and the uncertainty principle. J. Wu and J. Cao, J. Chem. Phys. 115(12), 5381-5391 (2001)   https://doi.org/10.1063/1.1389840
  174. Single molecule waiting time distribution functions in quantum processes. J. Cao, J. Chem. Phys. 114(12), 5137-5140 (2001)   https://doi.org/10.1063/1.1342217
  175. Single molecule tracking of heterogeneous diffusion. J. Cao, Phys. Rev. E 63(4), 041101/1-7 (2001)   https://doi.org/10.1103/PhysRevE.63.041101

  176. 2000

  177. Event-averaged measurements of single-molecule kinetics. J. Cao, Chem. Phys. Lett. 327(1-2), 38-44 (2000)   https://doi.org/10.1016/S0009-2614(00)00809-5
  178. Quantum coherence in nonlinear optical processes: Theory and possible application to control of chemical reaction and quantum computation. J. Cao, J. Lumin. 87-89, 30-34 (2000)   https://doi.org/10.1016/S0022-2313(99)00210-0
  179. Molecular π pulses: Population inversion with positively chirped short pulses. J. Cao, C. J. Bardeen, and K. R. Wilson, J. Chem. Phys. 113(5), 1898-1904 (2000)   https://doi.org/10.1063/1.481993
  180. Spectral analysis of electron transfer kinetics. I. Symmetric reactions. J. Cao and Y. Jung, J. Chem. Phys. 112(10), 4716-4722 (2000)   https://doi.org/10.1063/1.481027
  181. Effects of bath relaxation on dissipative two-state dynamics. J. Cao, J. Chem. Phys. 112(15), 6719-6724 (2000)   https://doi.org/10.1063/1.481247

  182. 1999

  183. Electronic Coherence in Mixed-Valence Systems: Spectral analysis. Y. Jung, R. Silbey, and J. Cao, J. Phys. Chem. A 103(47), 9460-9468 (1999)   https://doi.org/10.1021/jp9917594
  184. Steepest descent path study of electron-transfer reactions. J. Cao, J. Phys. Chem. A 103(49), 10571-10579 (1999)   https://doi.org/10.1021/jp992066q
  185. An adiabatic picture for electron transfer in mixed-valence systems. J. Cao, Chem. Phys. Lett. 312(5-6), 606-612 (1999)   https://doi.org/10.1016/S0009-2614(99)00840-4
  186. Using time-dependent rate equations to describe chirped pulse excitation in condensed phases. C. J. Bardeen, J. Cao, F. L. H. Brown, and K. R. Wilson, Chem. Phys. Lett. 302(5-6), 405-410 (1999)   https://doi.org/10.1016/S0009-2614(99)00175-X
  187. Ultrafast extended x-ray absorption fine structure (EXAFS)-theoretical considerations. F. L. H. Brown, K. R. Wilson, and J. Cao, J. Chem. Phys. 111(14), 6238-6246 (1999)   https://doi.org/10.1063/1.479928
  188. A unified approach for calculating quantum rate constants. J. Cao, Path Intregals from peV to TeV: 50 years after Feynman's Paper. Ed. R. Casalbuoni, R. Giachetti, V. Tognetti, R. Vaia, and P. Verrucchi. Singapore: World Scientific (1999)

  189. 1998

  190. Molecular "Π Pulse" for Total Inversion of Electronic State Population. J. Cao, C. J. Bardeen, K. R. Wilson, Phys. Rev. Lett. 80(7), 1406-1409 (1998)   https://doi.org/10.1103/PhysRevLett.80.1406
  191. Ultrafast X-ray diffraction theory: Time-scale considerations. J. Cao and K. R. Wilson, Proceedings of SPIE 3273, 219-224 (1998)   https://doi.org/10.1117/12.306131
  192. Ultrafast X-ray diffraction theory. J. Cao and K. R. Wilson, J. Phys. Chem. A 102(47), 9523-9530 (1998)   https://doi.org/10.1021/jp982054p
  193. Intrapulse dynamical effects in multiphoton processes: Theoretical analysis. J. Cao, J. Che, and K. R. Wilson, J. Phys. Chem. A 102(23), 4284-4290 (1998)   https://doi.org/10.1021/jp973097t
  194. Chirped pulse enhancement of multiphoton absorption in molecular iodine. V. V. Yakovlev, C. J. Bardeen, J. Che, J. Cao and K. R. Wilson, J. Chem. Phys. 108(6), 2309-2313 (1998)   https://doi.org/10.1063/1.475615

  195. 1997

  196. Ultrafast x-ray and electron diffraction: Theoretical considerations. M. Ben-Nun, J. Cao, and K. R. Wilson, J. Phys. Chem. A 101(47), 8743-8761 (1997)   https://doi.org/10.1021/jp971764c
  197. Optimal pump-dump control: Linearization and symmetry relation. Y. Yan, J. Cao, and Z. Shen, J. Chem. Phys. 107(9), 3471-3477 (1997)   https://doi.org/10.1063/1.474686
  198. A phase-space study of Bloch-Redfield theory. J. Cao, J. Chem. Phys. 107(8), 3204-3209 (1997)   https://doi.org/10.1063/1.474670
  199. Detecting wave packet motion in pump-probe experiments: Theoretical analysis. J. Cao and K. R. Wilson, J. Chem. Phys. 106(12), 5062-5072 (1997)   https://doi.org/10.1063/1.473552
  200. Quantum control of dissipative systems: Exact solutions. J. Cao, M. Messina, and K. R. Wilson, J. Chem. Phys. 106(12), 5239-5248 (1997)   https://doi.org/10.1063/1.473522
  201. Linear theory for optimal control of molecular wave packets. J. Cao and K. R. Wilson, Phys. Rev. A 55(6), 4477-4482 (1997)   https://doi.org/10.1103/PhysRevA.55.4477
  202. A simple physical picture for quantum control of wave packet localization. J. Cao and K. R. Wilson, J. Chem. Phys. 107(5), 1441-1450 (1997)   https://doi.org/10.1063/1.475151
  203. A unified framework for quantum activated rate processes. II. The nonadiabatic limit. J. Cao and G. A. Voth, J. Chem. Phys. 106(5), 1769-1779 (1997)   https://doi.org/10.1063/1.474123

  204. 1996

  205. A unified framework for quantum activated rate processes. I. General theory. J. Cao and G. A. Voth, J. Chem. Phys. 105(16), 6856-6870 (1996)   https://doi.org/10.1063/1.471980
  206. A theory for the quantum activated rate constant in dissipative systems. J. Cao and G. A. Voth, Chem. Phys. Lett. 261(1-2), 111-116 (1996)   https://doi.org/10.1016/0009-2614(96)00940-2
  207. Semiclassical approximations to quantum dynamical time correlation functions. J. Cao and G. A. Voth, J. Chem. Phys. 104(1), 273-285 (1996)   https://doi.org/10.1063/1.470898
  208. A novel method for simulating quantum dissipative systems. J. Cao, L. W. Ungar, and G. A. Voth, J. Chem. Phys. 104(11), 4189-4197 (1996)   https://doi.org/10.1063/1.471230
  209. Adiabatic path integral molecular dynamics methods. II. Algorithms. J. Cao and G. J. Martyna, J. Chem. Phys. 104(5), 2028-2035 (1996)   https://doi.org/10.1063/1.470959

  210. 1995

  211. On the Feynman path centroid density as a phase space distribution in quantum statistical mechanics. R. Hernandez, J. Cao, and G. A. Voth, J. Chem. Phys. 103(12), 5018-5026 (1995)   https://doi.org/10.1063/1.470588
  212. The computation of electron transfer rates: The nonadiabatic instanton solution. J. Cao, C. Minichino, and G. A. Voth, J. Chem. Phys. 103(4), 1391-1399. (1995)   https://doi.org/10.1063/1.469762
  213. A theory for time correlation functions in liquids. J. Cao and G. A. Voth, J. Chem. Phys. 103(10), 4211-4220 (1995)   https://doi.org/10.1063/1.470660
  214. Modeling physical systems by effective harmonic oscillators: The optimized quadratic approximation. J. Cao and G. A.Voth, J. Chem. Phys. 102(8), 3337-3348 (1995)   https://doi.org/10.1063/1.469207
  215. A scaling and mapping theory for excess electrons in simple fluids. J. Cao and B. J. Berne, J. Chem. Phys. 102(1), 432-436 (1995)   https://doi.org/10.1063/1.469420

  216. 1994

  217. The formulation of quantum statistical mechanics based on the Feynman path centroid density. V. Quantum instantaneous normal mode theory of liquids. J. Cao and G. A. Voth, J. Chem. Phys. 101(7), 6184-6192 (1994)   https://doi.org/10.1063/1.468400
  218. The formulation of quantum statistical mechanics based on the Feynman path centroid density. IV. Algorithms for centroid molecular dynamics. J. Cao and G. A. Voth, J. Chem. Phys. 101(7), 6168-6183. (1994)   https://doi.org/10.1063/1.468399
  219. The formulation of quantum statistical mechanics based on the Feynman path centroid density. III. Phase space formalism and analysis of centroid molecular dynamics. J. Cao and G. A. Voth, J. Chem. Phys. 101(7), 6157-6167 (1994)   https://doi.org/10.1063/1.468503
  220. The formulation of quantum statistical mechanics based on the Feynman path centroid density. II. Dynamical properties. J. Cao and G. A. Voth, J. Chem. Phys. 100(7), 5106-5118 (1994)   https://doi.org/10.1063/1.467176
  221. The formulation of quantum statistical mechanics based on the Feynman path centroid density. I. Equilibrium properties. J. Cao and G. A. Voth, J. Chem. Phys. 100, 5093-5105 (1994)   https://doi.org/10.1063/1.467175
  222. A semiclassical reactive flux method for the calculation of condensed phase activated rate constants. D. E. Sagnella, J. Cao and G. A. Voth, Chem. Phys. 180(2-3), 167-180 (1994)   https://doi.org/10.1016/0301-0104(93)E0419-V
  223. Winding-number effect in path-integral simulations. J. Cao, Phys. Rev. E 49(1), 882-889 (1994)   https://doi.org/10.1103/PhysRevE.49.882

  224. 1993

  225. A new perspective on quantum time correlation functions. J. Cao and G. A. Voth, J. Chem. Phys. 99(12), 10070-10073. (1993)   https://doi.org/10.1063/1.465512
  226. Theory and simulation of polar and nonpolar polarizable fluids. J. Cao and B. J. Berne, J. Chem. Phys. 99(9), 6998-7011 (1993)   https://doi.org/10.1063/1.465446
  227. Theory of polarizable liquid crystals: Optical birefringence. J. Cao and B. J. Berne, J. Chem. Phys. 99(3), 2213-2220 (1993)   https://doi.org/10.1063/1.466200
  228. A Born-Oppenheimer approximation for path integrals with an application to electron solvation in polarizable fluids. J. Cao and B. J. Berne, J. Chem. Phys. 99(4), 2902-2916 (1993)   https://doi.org/10.1063/1.465198

  229. 1992

  230. Many-body dispersion forces of polarizable clusters and liquids. J. Cao and B. J. Berne, J. Chem. Phys. 97(11), 8628-8636 (1992)   https://doi.org/10.1063/1.463381
  231. A new quantum propagator for hard sphere and cavity systems. J. Cao and B. J. Berne, J. Chem. Phys. 97(4), 2382-2385 (1992)   https://doi.org/10.1063/1.463076

  232. 1990

  233. Low-temperature variational approximation for the Feynman quantum propagator and its application to the simulation of quantum systems. J. Cao and B. J. Berne, J. Chem. Phys. 92(12), 7531-7539 (1990)   https://doi.org/10.1063/1.458189
  234. Monte Carlo methods for accelerating barrier crossing: Anti-force-bias and variable step algorithms. J. Cao and B. J. Berne, J. Chem. Phys. 92(3), 1980-1985 (1990)   https://doi.org/10.1063/1.458029
  235. Linear theory of superradiance in a free-electron laser. S. Cai, J. Cao and A. Bhattacharjee, Phys. Rev. A 42(7), 4120-4126 (1990)   https://doi.org/10.1103/PhysRevA.42.4120

  236. 1989

  237. On energy estimators in path integral Monte Carlo simulations: Dependence of accuracy on algorithm. J. Cao and B. J. Berne, J. Chem. Phys. 91(10), 6359-6366. (1989)   https://doi.org/10.1063/1.457403

Accessibility