Menu

NSE - Nuclear Science & Engineering at MIT

FAQ | Contact | Jobs | NSE Policies

RESEARCH

Research

Our Department's field of study is nuclear reactions and radiation, their applications, and their consequences. We generate, control, and apply nuclear reactions and radiation for the benefit of society and the environment.

Fission

Today, fission is entering a new era – one in which new-generation reactors, upgraded existing plants, and new fuel cycle strategies will redefine nuclear power's role in the world's overall energy supply. more
CANES

Fusion

The sun and stars are powered by fusion: nuclear reactions that create heavier elements from lighter ones. If this energy source can be harnessed at the human scale, it has the advantages of inexhaustible fuel resources and greatly reduced proliferation and environmental concerns. more
PSFC : Alcator C-Mod

Nuclear Security

Throughout its history, the nuclear community has faced a two-fold challenge: fulfill the promise of low-cost, zero-carbon power generation, while also preventing proliferation of nuclear weaponry. more
Future of Nuclear Fuel Cycle
Future of Nuclear Power

Radiation Sources, Detection & Measurement

A major goal of the Nuclear Science and Engineering Department is to advance the core disciplines needed to achieve new, beneficial applications of radiation science and technology. These disciplines encompass the production and control of radiation and the study and application of radiation interactions with matter. more

Modeling & Simulation

Exciting new developments in multi-scale and multi-physics modeling, coupled with the rapidly advancing capabilities of high-performance computers and associated algorithmic and simulation methodologies, are making it possible to simulate nuclear systems with much higher fidelity than ever before. more
CASL

Materials in Extreme Environments

Limits on materials behavior are among the greatest technical obstacles to improving the safety and economic performance of nuclear energy systems. Ensuring the viability of structural and other materials in the aging fleet of commercial LWR power reactors will be critical to current efforts to extend the life of these plants beyond 60 years. more

Department of Nuclear Science & Engineering

Massachusetts Institute of Technology
77 Massachusetts Avenue, 24-107, Cambridge, MA 02139
nse-info@mit.edu

Copyright © 2015 Department of Nuclear Science and Engineering