NSE - Nuclear Science & Engineering at MIT

FAQ | Contact | Jobs | NSE Policies

Fall 2014


LNSP Roundtable

Rose Gottemoeller, Under Secretary of State for Arms Control and International Security
Future Prospects for US-Russian Arms Control
October 23 :: MIT 54-100 :: 1.45 PM

Biography
Rose E. Gottemoeller became the Under Secretary for Arms Control and International Security In March 2014, having been acting in this position since February 2012. While Acting, Gottemoeller continued to serve as Assistant Secretary of State for the Bureau of Arms Control, Verification and Compliance, a position she was appointed to on April 2009. She was the chief U.S. negotiator of the New Strategic Arms Reduction Treaty (New START) with the Russian Federation, which entered into force on February 2011.

In 1998–2000, she served as Deputy Undersecretary of Energy for Defense Nuclear Nonproliferation and before that, Assistant Secretary and Director for Nonproliferation and National Security, she was responsible for all nonproliferation cooperation with Russia and the Newly Independent States.

Ms. Gottemoeller received a BS from Georgetown University, and a MA from George Washington University. She is fluent in Russian.


ANS Seminar

Michaele Brady Raap, President of the American Nuclear Society
October 24 :: MIT 24-115 :: 11:00 AM

Dr. Michaele (Mikey) Brady Raap is a chief engineer with the Nuclear Systems Design, Engineering & Analysis Group within the National Security Directorate at the Pacific Northwest National Laboratory (PNNL), and will be speaking about US DOE Laboratories and the Remediation of Fukushima Dai-Ichi.


ANS Seminar

Lin Shao, Associate Professor of Nuclear Engineering, Texas A&M University
October 27 :: MIT 24-115 :: 3:00 PM
Structural Materials under Accelerated Radiation Testing

Abstract

It is well known that currently fast reactors cannot accumulate more than 20 dpa per year in iron-base structural alloys. Currently available mixed-spectrum reactors (HFIR, ATR) in the USA cannot accumulate more than 10 dpa per year and usually less. Therefore the international radiation materials community has turned its attention to charged particle simulation techniques at vastly accelerated dpa rates as surrogates for evaluation of new alloy concepts and candidates, especially with respect to void swelling and irradiation creep. The various neutron-atypical artifacts preclude, however, an exact one-to-one ion-neutron comparison for confident near-exact prediction of swelling in a neutron environment. Claims were frequently made that predictive capability was possible, but such claims were never validated and should be taken with a grain of salt. In this talk, the most important “reactor-atypical” characteristics or “artifacts” of charged particle irradiation will be discussed. Such major artifacts include defect imbalance, flux effect and temperature shifting. After that, we will report our recent finding on nano-grained alloys and oxide dispersion-strengthened alloys, as examples of many on-going projects at Texas A&M University.

Biography

Dr. Lin Shao is Associate Professor of Nuclear Engineering at Texas A&M University (TAMU). He received a BS degree from Peking University and PhD from University of Houston, both in Physics. Prior to joining TAMU, he was Director Funded Postdoctoral Fellow at Los Alamos National Laboratory. Dr. Shao’s primary research interests are radiation materials science and the development of damage resistant materials. He has published four book chapters, over 140 journal papers. Currently, he is director of the accelerator laboratory at Texas A&M University, which is equipped with six accelerators with terminal voltages ranging from 10 kV to 1.7 MV. Dr. Shao received a Postdoctoral Distinguished Performance Award from Los Alamos National Laboratory in 2006 and the inaugural Ion Beam Modification of Materials (IBMM) Prize in 2008 for his past contribution in the ion beam field. He also received 2009 NSF career award and numerous teaching awards at TAMU.

 

Massachusetts Institute of Technology

Facebook

Copyright © 2014 Department of Nuclear Science and Engineering