Prof Murman

Fluid Mechanics and Aerodynamics
Professor Wes Harris

Spring 2002

Learning Objectives (.pdf)

Q2F Sample Problems and Solutions Handout

Q4F Sample Problems and Solutions Handout

Lecture
Date
Topic
Lecture Notes Anderson, Third Edition
F1
2/6 Conservation of linear momentum: integral formulation   pp. 112-124
F2
2/7 Conservation of linear momentum: integral formulation  
"
F3
2/8 Joukowski airfoil; conformal transformations, complex variables Lecture 3 [Wes’ notes]
F4
2/11 Joukowski airfoil; Kutta condition Lecture 4 pp. 290-295
F5
2/13 Thin Airfoil Theory (TAT) Lecture 5 pp. 277-349
F6
2/13 TAT  
"
F7
2/19 TAT Lecture 7
"
F8
2/20 Wing theory (three dimensional);span, bound vorticity, downwash, wakes Lecture 8 pp. 351-417
F9
2/21 Lifting line theory; induced angle of attack; induced drag; aspect ratio; elliptic wing loading Lecture 9
"
F10
2/22 Drag polar; viscous drag; profile drag. Reynolds number Lecture 10
"
F11
2/25 Summary: Aerodynamics of airfoils, wings and bodies at low speeds Lecture 11
----
F12
2/26 Review of thermodynamics and the conservation principles Lecture 12 pp. 437-463
F13
2/27 Wave propagation; acoustics   pp. 465-475
F14 3/1 Steady, one-dimensional, isentropic flows: area affects, throats, choking. Normal shock waves Lecture 14 pp. 475-502
F15 3/4
"
Lecture 15 pp. 555-586
F16 3/5
"
Lecture 16
"
F17 3/6 Two-dimensional compressible flow; oblique shock waves Lecture 17 pp.503-532
Q2F 3/7 Aerodynamics of airfoils, wings and bodies  
----
F18 3/8 Prandtl-Meyer expansion waves Lecture 18 pp. 532-544
F19 3/11 Supersonic thin airfoil theory (STAT)   pp. 544-555
F20 3/12 STAT  
"
Q4F 4/4 Compressible flows:one-dimensional flow, shock waves, airfoils  
----

es

 


[Return to Home]