- absorptance
- 19.
- absorption
- 19.
- actuator disk theory
- 11.7.3
- adiabatic
- see processes
- adiabatic efficiency
- see efficiency
- adiabatic flame temperature
- 15.5
- angular momentum
- 12.2
- Biot number
- 17.3
- black body
- 19.1
- boundary layer
- 17.1
- Brayton cycle
- 3.7
- efficiency
- 3.7.1
- in -
- 6.4
- maximum work
- 3.7.2
- net work
- 6.4.1
- Breguet Range Equation
- 13.3
- Carnot cycle
- 3.3
| 6.1
- efficiency
- 3.3
- in -
- 6.3
- two-phase
- 8.3
- Clausius-Clapeyron equation
- 8.4
- climbing flight
- of aircraft
- 13.5
- coefficient of performance
- 3.4
- combined cycle
- 8.7
- combined first and second law
- 5.1
| 5.3
- compressor adiabatic efficiency
- 11.6.5
- conduction
- 16.2
- resistance circuits
- 16.4
- through cylindrical shell
- 16.5.1
- through spherical shell
- 16.5.2
- with convection
- 17.2
- conductivity
- 16.2
- continuum
- 1.2.1
- control volume
- 2.5
- defined
- 2.6
- convection
- 17.
- Newton's law of cooling
- 17.
- Reynolds analogy
- 17.1
- with conduction
- 17.2
- coordinate systems
- 10.
- critical point
- 8.1
- critical radius of insulation
- 17.2
- cycle
- Brayton
- 3.7
- Carnot
- 3.3
- combined
- 8.7
- defined
- 1.2.5
| 3.1
- Diesel
- 3.6
- Otto
- 3.5
- Rankine
- 8.5
- real cycle behavior
- 11.6.5
- Diesel cycle
- 3.6
- dimensional analysis
- for propellers
- 11.7.4
- dissipation
- 6.5
- drag
- used to predict heat transfer
- 17.1
- efficiency
- adiabatic
- 6.7
| 11.6.5
- Brayton cycle
- 3.7.1
- Carnot cycle
- 3.3
- overall
- 11.1
| 13.3.1
- propulsive
- 11.2
| 13.3.2
- refrigerators and heat pumps
- 3.4
- thermal
- 3.1
- emittance
- 19.2
- endurance
- of aircraft
- 13.4
- energy
- 2.1
- internal
- 2.1
| 2.6
- kinetic
- 2.1
- potential
- 2.1
- transfered as heat
- 1.3.1
- transfered as work
- 1.3.3
- unavailable
- 6.6
- enthalpy
- defined
- 2.3.1
- enthalpy of formation
- 15.3
- entropy
- 6.8
- and disorder
- 7.1
- and propulsive power
- 6.7
- definition
- 5.1
- generated
- 6.5
- on a microscopic scale
- 7.2
- entropy changes
- 6.5
- hot brick problem
- 5.5
- ideal gas
- 5.4
- equilibrium
- 1.2.4
- defined
- 1.2.4
- euler turbine equation
- 12.3
- extensive
- see properties
- fin
- 18.2
- First Law of Thermodynamics
- combined with second law
- 5.3
- control mass form
- 2.1
- control volume form
- 2.5.2
- for reacting systems
- 15.4
- SFEE (simplified CV form)
- 2.5.3.3
- Fourier's law of heat conduction
- 16.2
- free expansion
- 4.2
| 5.5
- friction
- and lost work
- 6.7
- fuel-air ratio
- 11.6.3.2
| 15.2
- Gibbs equation
- 5.1
| 5.3
- gray body
- 19.2
- h-s diagrams
- 6.4
- heat
- 1.3.1
- sources
- 18.1
- transfer in steady state
- 16.3
- two-phase systems
- 8.2
- heat exchangers
- 18.5
- efficiency
- 18.5.3
- heat flux
- 16.2
- heat pumps
- 3.4
- heat reservoir
- heat transfer between two
- 5.5
- heat transfer to or from
- 5.5
- work from single
- 5.5
- heat transfer coefficient
- 17.1
- hot brick problem
- 5.5
- ideal gases
- 2.4.1
- enthalpy
- 2.3.1
| 2.4.1
- entropy changes
- 5.4
- equation of state
- 2.4.1
- internal energy
- 2.4.1
- perfect gas
- 2.4.1
- specific heats
- 2.4.1
| 2.4.1
- intensive
- see properties
- internal combustion engine
- 3.5
- internal energy
- see energy
- irreversibility
- 4.2
| 6.5
| 6.8.2
- in cycles
- 11.6.5
- isentropic efficiency
- see adiabatic efficiency
- isothermal
- see processes
- Isp
- 11.4
- jet engine
- thrust
- 10.3
- Joule cycle
- see Brayton cycle
- Kirchoff's law
- 19.2
- laminar boundary layer
- see boundary layer
- lost work
- 6.5
| 6.6
- throttle
- 6.7
- maximum work
- allowed by Second Law
- 6.1
- Brayton cycle
- 3.7.2
- momentum
- integral theorem
- 10.
- Newton's law of cooling
- 17.
- Newton's Second Law
- 10.
- nozzle
- rocket
- 14.3
- Otto cycle
- 3.5
- efficiency
- 3.5.1
- non-dimensional power
- 3.5.2
- overall efficiency
- see efficiency
| see efficiency
- path
- 1.2.5
- perfect gas
- 2.4.1
- performance
- of aircraft
- 13.
- of aircraft engine
- 11.
- of propeller
- 11.7
- of ramjet
- 11.6.3
- of rocket
- 14.1
- of turbojet
- 11.6.4
- phase
- 8.1
- power coefficient
- 11.7.4.4
- power required
- for aircraft
- 13.2
- Prandtl number
- 17.1
- process
- defined
- 1.2.5
- processes
- adiabatic
- 1.3.1
| 2.3.1
- examples of reversible and irreversible
- 6.8.3
- isothermal
- 3.3
| 4.2
- isothermal work
- 3.1
- quasi-equilibrium
- 1.2.6
- reversible
- 1.3.3
- reversible and adiabatic
- 2.4.2
- reversible and adiabatic relationship
- 2.4.2
- propellers
- actuator disk theory
- 11.7.3
- efficiency
- 11.7.4.3
- performance
- 11.7
- power coefficient
- 11.7.4.4
- thrust coefficient
- 11.7.4.1
- torque coefficient
- 11.7.4.2
- properties
- extensive
- 1.2.3
| 1.4
- intensive
- 1.2.3
| 1.4
- specific
- 1.2.3
| 1.4
- propulsive efficiency
- 11.2
| 13.3.2
- implications for design
- 11.3
- quality
- 8.1
- quasi-equilibrium
- see processes
- quasi-one-dimensional heat flow
- 16.5
- radiation
- 19.
- of a black body
- 19.1
- ramjet
- 3.7.3
- efficiency
- 3.7.3
- fuel-air ratio
- 11.6.3.2
- performance
- 11.6.3
- specific impulse
- 11.6.3.3
- thrust
- 11.6.3
- range
- see Breguet Range Equation
- Rankine cycle
- 8.5
- efficiency
- 8.5
- superheated
- 8.6
- reciprocity relation
- 19.4
- reflectance
- 19.
- reflection
- 19.
- refrigerators
- 3.4
- resistance circuits
- 16.4
- reversibility
- 1.3.3
| 4.1
| 5.2.5
| 6.1
| 6.5
| 6.8.2
- things to check for
- 4.3
- Reynolds analogy
- 17.1
- rocket
- performance of
- 14.1
- thrust
- 10.2
- rocket equation
- 14.2
- rocket nozzle
- 14.3
- saturated liquid
- 8.1
- saturated vapor
- 8.1
- saturation state
- 8.1
- Second Law of Thermodynamics
- 5.2.4
- combined with first law
- 5.3
- experimental proof
- 8.4
- SFC
- 11.4
- shape factor
- 19.4
- reciprocity
- 19.4
- shear stress
- 17.1
- sign conventions
- control mass form
- 2.6
- skin friction coefficient
- 17.1
- slab
- 16.3.1
- composite
- 16.4
- specific
- see properties
- specific heats
- 2.4
- ideal gases
- 2.4.1
- specific impulse
- 11.4
- stagnation temperature
- defined
- 2.5.3
- Stanton number
- 17.1
- state
- static vs. stagnation
- 2.6
| 6.7
- thermodynamic
- 1.2.3
- state equation
- see ideal gases
- Steady Flow Energy Equation
- see First Law of Thermodynamics
- steady-state heat transfer
- 16.3
- Stefan-Boltzmann constant
- 19.1
- stoichiometric
- 15.1
- superheated
- Rankine cycle
- 8.6
- vapor
- 8.1
- system
- closed
- 1.2.2
- T-s diagrams
- 6.3
- tank filling problem
- 2.3.3
| 2.5.4.1
- temperature distribution
- cylindrical shell
- 16.5.1
- slab
- 16.3.1
- spherical shell
- 16.5.2
- temperature scale
- 6.2
- theoretical air
- 15.1
- thermal conductivity
- 16.2
- thermal resistance circuits
- 16.4
- thermochemistry
- 15.
- thermocouple
- 19.3.2
- thermodynamic cycle
- see cycle
- thermodynamic efficiency
- see efficiency
- thermodynamic properties
- see properties
- thermodynamic state
- see state
- thermodynamic system
- see system
- thermodynamic temperature scale
- see temperature scale
- throttle
- 2.3.1
| 6.7
- thrust
- 11.6.3
- thrust coefficient
- 11.7.4.1
- torque coefficient
- 11.7.4.2
- transient heat transfer
- 18.3
- transmission
- 19.
- transmittance
- 19.
- TSFC
- 11.4
- turbine adiabatic efficiency
- 11.6.5
- turbojet
- performance
- 11.6.4
- turbulent boundary layer
- see boundary layer
- two-phase systems
- 8.1
- Carnot cycle
- 8.3
- P-T diagram
- 8.1
- P-v diagram
- 8.1
- Rankine cycle
- 8.5
- T-v diagram
- 8.1
- work and heat transfer
- 8.2
- unavailable energy
- 6.6
- vapor dome
- 8.1
- slope
- 8.4
- vapor pressure curve
- 8.1
- velocity triangles
- 12.5
- view factor
- 19.4
- viscosity
- dynamic
- 17.1
- kinematic
- 17.1
- work
- 1.3.3
| 1.4
-
- 1.3.3
- from a single heat reservoir
- 5.5
- net work in a real cycle
- 11.6.5
- shaft
- 2.6
- two-phase systems
- 8.2
- Zeroth Law of Thermodynamics
- 1.3.2
| 5.2.2
UnifiedTP
|