NSE - Nuclear Science & Engineering at MIT


Dennis G. Whyte

Dennis G. Whyte

Hitachi America Professor of Engineering


Assistant: Kristina Souza souzakm@mit.edu

Plasma Science & Fusion Center
Plasma Surface Interactions Science Center


A recognized leader in fusion research, especially in the magnetic confinement of plasmas, Whyte has paved an innovative and faster path to producing fusion energy. He leads the fusion project, SPARC — a compact, high-field, net fusion energy fusion device — in collaboration with private fusion startup Commonwealth Fusion Systems (CFS). The core of the SPARC project was formed over eight years ago during a design course led by Whyte to challenge assumptions in fusion. Many of the ideas underpinning the high-field approach — including the use of HTS for high-field, demountable magnets, liquid blankets, and ARC (a fusion power plant concept) — have been conceived of or significantly advanced in his design courses. Whyte has over 300 publications, is a fellow of the American Physical Society, and has served on panels for the National Academies, the United States government, and the Royal Society. In 2018 Whyte received The Fusion Power Associates (FPA) Board of Directors Leadership Award which is given annually to individuals who have shown outstanding leadership qualities in accelerating the development of fusion. Whyte earned a BS from the University of Saskatchewan, and an MS and PhD from Université du Québec.


PhD U. Québec 1993
MSc U. Québec 1989
BEng U. Saskatchewan 1986


  • Fusion Power Associates Leadership Award
  • Nuclear Fusion Journal Prize
  • Ruth and Joel Spira Award for Distinguished Teaching
  • Fellow, American Physical Society Division of Plasma Physics
  • Department of Energy Plasma Physics Junior Faculty Award


Magnetic Fusion Energy: Boundary plasma physics, advanced plasma confinement regimes in tokamaks, plasma diagnostics, mitigation of disruption damages

Plasma-Surface Interactions: basic physics of plasma-material interfaces, dynamic measurement techniques for material evolution under plasma bombardment, implications of plasma-surface interactions in magnetic fusion reactors

Accelerators and Surface Analysis: low-energy nuclear scattering techniques for material analysis and damage, development of in-situ surface diagnostic methods for magnetic fusion


Recent Publications

  1. R. M. Churchill, C. Theiler, B. Lipschultz, I. H. Hutchinson, M. L. Reinke, D. Whyte, J. W. Hughes, P. Catto, M. Landermann, D. Ernst, C. S. Chang, R. Hager, A. Hubbard, P. Ennever, J. R. Wwalk and Alcator C-Mod Team, “Poloidal asymmetries in edge transport barriers,” Physics of Plasmas, 22, 056104, 2015.
  2. R. R. Parker, P. T. Bonoli, S. Shiraiwa, G. M. Wallace, B. LaBombard, I. C. Faust, M. Porkolab and D. G. Whyte, “High density LHRF experiements in Alcator C-Mod and implications for reactor scale devices,” Nuclear Fusion 55 (4), 043009, March, 2015.
  3. S. J. Zinkle, J. P. Blanchard, R. W. Callis, C. E. Kessel, R. J. Kurtz, P. J. Lee, K. A. McCarthy, N. B. Morley, F. Najmabadi, R. E. Nygren, G. R. Tynan, D. G. Whyte, R. S. Willms and B. D. Wirth, “Fusion materials science and technology research opportunities now and during the ITER era,” Fusion Engineering and Design 89 (7–8), 1579–1585, October, 2014.
  4. A. E. White, M. Barnes, A. Dominguez, M. Greenwald, N. T. Howard, A. E. Hubbard, J. W. Hughes, D. R. Mikkelsen, F. I. Parra, M. L. Reinke, C. Sung, J. Walk and D. G. Whyte, “Reduction of core turbulence in I-mode plasmas in Alcator C-Mod,” Nuclear Fusion 54 (8), 083019, July, 2014.
  5. J. R. Walk, J. W. Hughes, A. E. Hubbard, J. L. Terry, D. G. Whyte, A. E. White, S. G. Baek, M. L. Reinke, C. Theiler, R. M. Churchill, J. E. Rice, P. B. Snyder, T. Osborne, A. Dominguez and I. Cziegler, "“Edge-localized mode avoidance and pedestal structure in I-mode plasmas,” Physics of Plasmas (5), 056103, April, 2014.
  6. G. M. Wright, H. A. Barnard, L. A. Kesler, E. E. Peterson, P. W. Stahle, R. M. Sullivan, D. G. Whyte and K. B. Woller, “An experiment on the dynamics of ion implantation and sputtering of surfaces,” Review of Scientific Instruments 85 (2), February 2014.
  7. R. Ochoukov, D. G. Whyte, D. Brunner, D. A. D'Ippolito, B. LaBombard, B. Lipschultz, J. R. Myra, J. L. Terry and S. J. Wukitch, “ICRF-enhanced plasma potentials in the SOL of Alcator C-Mod,” Plasma Physics and Controlled Fusion 56 (1), January 2014.
  8. C. M. Cooper, J. Wallace, M. Brookhart, M. Clark, C. Collins, W. X. Ding, K. Flanagan, I. Khalzov, Y. Li, J. Milhone, M. Nornberg, P. Nonn, D. Weisberg, D. G. Whyte, E. Zweibel and C. B. Forest, “The Madison plasma dynamo experiment: A facility for studying laboratory plasma astrophysics,” Physics of Plasmas 21 (1), January 2014.


22.62 Fusion energy
22.63 Fusion Technology
22.01 Introduction to Nuclear Engineering and Ionizing Radiation